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Abstract

Enabling DNSSEC at the root will affect traffic patterns such as fallback to
TCP. This study aims at finding how the current K-root instances are influenced
and what they can handle. Two different loadbalancers are used and UDP and
TCP query load is measured. We also look at the expected response sizes and
bandwidth usage for a signed root zone.

1 Test setup

The test setup consists of four identical Dell R200 Poweredge machines , a router,
and a switch. The machines have a single core Intel Celeron 430 CPU clocked at
1.8GHz, with 512KB cache.

Two different routers are used, a Cisco 73xx and a Juniper M7i. Each experi-
ment one of them functions as load-balancer between two of the R200’s (referred
to as Server1 and Server2) running CentOS 4.8 (2.6.9-89.0.11.ELsmp) and NSD
3.2.3. The servers together with the router represent a K-root instance. The
other two machines are running the same operating system and can be used for
different roles such as simulate clients from the Internet. Dependent on their role
these are called Player or Listener. All machines are connected to an 100Mb/s
full duplex Ethernet switch (HP ProCurve 2524) dividing the network in two
segments using VLANs. Figure 1 shows the topology of the setup. P1 and P2
represent the players, K1 and K2 the servers, R the router and the small cir-
cles the Ethernet switch. The router balances traffic to address 193.0.14.129

between both servers.
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Figure 1: Logical Topology of test setup.
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2 UDP PERFORMANCE

The servers host the root, arpa. and root-servers.net. zones. We signed
the zonefiles using a 2048 bit RSASHA256 KSK and a 1024 bit RSASHA256 ZSK
and NSEC.

To simulate real world DNS traffic we used a previously recorded pcap capture
file with more than 9 million queries (about 900MB, 1 hour) supplied by RIPE.
tcprewrite1 is used to rewrite the captures for our test setup and finally tcpreplay2

version 3.4.3 to resend the queries towards the servers.

2 UDP performance

We are interested to see how many DNS queries a k-root instance can handle,
the result can serve as a baseline for further experiments.

2.1 Method

For this test a pcap file with UDP IPv4 queries is prepared. The source eth-
ernet address is rewritten to that of Player and the destination address to the
router’s interface. The destination IP address is rewritten to the address of the
servers. The source IP address is set to that of Listener. This causes the re-
sponses to flow back to Listener and offloads Player. Furthermore a black hole is
introduced to avoid Listener sending back ICMP messages for unexpected traffic:
route add -net 193.0.14.129 netmask 255.255.255.255 reject

Since a single source address is used all communication is only with one of
the servers. Just to be sure, the other server is monitored for packets ending up
at the wrong machine. tcpreplay is used for replaying the UDP traffic, rate,
total amount of packets and the get time of day timing method is specified. The
tests are performed for the Juniper as well as the Cisco router.

2.2 Juniper results

Figure 2(a) shows at the X-axis the rate of UDP DNS queries send towards the
server in queries per second, the Y-axis represents the rate of answered queries
in the same unit. Figure 2(b) is the same data but the Y-axis now represents the
fraction of queries being answered.

Each plot point is a measurement of around 10 seconds, with each next test
the rate of the queries is incremented by 100 qps. At high rates tcpreplay does not
have enough resolution to output the requested packets per second, this causes
the bands in the X-axis. It is believed this does not affect the experiment much
although intermediate rates can not be tested.

It is verified that all requests are actually received by the server (tested after
the performance drop at 40K qps) but not all answers are being send back. When
this happens the performance stays stable at around 25K qps answered, taking
the average response size into account (see Section 3) we see this is very close to
the network limit of 100 Mbps.

1Tcprewrite is part of the tcpreplay suite.
2http://tcpreplay.synfin.net/
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2 UDP PERFORMANCE
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(a) Number of answered queries per second.
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(b) Ratio of answered queries.

Figure 2: Juniper. Measured from 100 qps to 100,000 qps with steps of 100 qps.

2.3 Cisco results

The same test is repeated with the Cisco router attached, the results are shown
in figure 3. Before the network limit is reached ,the figures show no significant
degradation (there is a jump from a constant < 0.2 percent to around 11 percent
dropout around 28K qps) for both routers. Additionally table 1 shows the sudden
leap in the critical point in a numerical fashion.
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Figure 3: Cisco. Measured from 100 qps to 100,000 qps with steps of 100 qps.

The graphs for Juniper and Cisco show no notable difference. Both vendors
advertize stateless load-balancing, when performed in hardware it is likely both
will be capable doing this at wire speed.

When carefully inspected the graphs for both routers show an outlier at
around 15,000 qps where performance drops from 100 to 81 percent. The cause
for this anomaly is not looked in to any further.
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3 BANDWIDTH AND SIZE DISTRIBUTION

Queries/s Ratio answered

. . . . . .
27641.5 0.998271
27657.6 0.998311
28585.3 0.892781
28571.4 0.875466

. . . . . .

Table 1: Successrate around the critical point. Note that this data looks a bit
skewed by the banding of tcpreplay.

3 Bandwidth and size distribution

The size of DNS responses will increase after signing. The total bandwidth
increase depends on the types of queries answered. We will look at the average
size, the size distribution, and the types of the responses. Additionally we’ll take
a look at the EDNS properties of each query.

3.1 Method

The same test setup as with the UDP performance experiment is used, i.e.
queries are send from Player and answers received by Listener. To monitor
the actual bytes on the wire we use the SNMP capabilities of the switch. IF-
MIB::ifHCInOctets.3 and IF-MIB::ifHCOutOctets.3 give the total amount of
bytes passing interface 3 since restart of the switch. Interface 3 of the switch is
connected to the router at the same VLAN as the servers, it is colored red in
figure 1

With tcpreplay 30K are sent queries at low speed to ensure every one of them
can be answered by the server without any problems. Before and after the replay
the switch is queried for the port statistics. The experiment is performed for an
unsigned root zone and repeated for a signed version of that zone.

3.2 Results

Table 2 contains three tests. The first two used 30,000 queries, one with a
unsigned zonefile and one with a signed version of the same file. The last one
repeats the signed test but with a tenfold of queries.

For our test set, the responses from the signed zone are on average 29 percent
larger than the unsigned zone. With DNSEC, responses for non-existing domains
could easily get 8 times as big. Since a large part of the answers are of this kind
the increase was expected to be higher.

Because the increase is less than initially expected, we gather some additional
information (Note: L-root signing at a later date confirmed these figures). First
we used tcpdump to obtain the response codes for each answer:

tcpdump -nn -r unsigned.pcap -X "udp and port 53"| grep 0x0010 |
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3 BANDWIDTH AND SIZE DISTRIBUTION

Test Direction Bytes Bytes/q

unsigned 30K in 2727724 91
out 9682243 321

signed 30K in 2727788 91
out 12395175 413

signed 300K in 27285254 91
out 124924911 416

Table 2: Average size for DNS requests and responses in signed and unsigned
zonefile.

sed -re "s/.* [0-9a-z]{3}([0-9a-z]) .*/\1/" | sort | uniq -c

The results are presented in table 3. Because both samples are not equal in
size, the percentage is included as well. Since the responses codes are very similar
distributed we can use this data to compare reply sizes. There is a large portion
of NXDomain responses (43%) and those responses increase more in size than
other types thus one would expect a large increase in overall response size.

Number of queries
Code Response Unsigned Signed

0 No error 15318 (57.2%) 17051 (56.9%)
1 Format error 2 2
3 NX domain 11450 (42.8%) 12904 (43.1%)
4 Not Implemented 10 10

Total 26780 29967

Table 3: NSD responses by code for both an unsigned and a signed zone.

Figure 4 shows the reply size distribution for both a signed and an unsigned
zone. This presents us a clue why the average reply size for the signed zone is
lower than expected: The first peak in figure 4(a) represents probably mostly
NXDomain responses. Due to DNSSEC ’s denial of existence these responses
should become relatively large in the signed version but in the signed version
(figure 4(b)) there is still a large peak around 150 Bytes. Wolfgang Nagele of
RIPE NCC sugested that the majority of queries leading to NXDomain answers
do request for DNSSEC data (DO bit set). We will test this hypothesis.

The DO bit is not copied from the query. With the assumption that all
answers with both an OPT and RRSIG record had the bit set in the match-
ing query, the amount of NXDomain responses with DNSSEC support can be
estimated. The rest of the queries do not support DNSSEC, see table 4.

Indeed the amount of queries with the DO bit set is much smaller for answers
with an error than for answers without any error. This is likely to cause the
smaller than expected size increase. Also, if 60 percent of the answers do not
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Figure 4: Reply size distribution.

Type No DNSSEC

NXDomain 70%
No Error 52%

Overall 60%

Table 4: Percentage of queries with no OPT record or DO=0.

increase in size due a lack of DNSSEC support, the rest must have grown with
a factor 1.73.

The PMTU’s advertized in the requests are counted and presented in table 5.

Count Size in bytes Percentage

2167133 4096 84%
344402 2048 13%
51564 512 2%
28121 1280 1%

186 2600
73 768
18 1024
4 1420

Table 5: Advertised PMTU’s for sample of 2.6M queries.

4 TCP loadbalancing

All incoming DNS requests at a k-root instance are load balanced over two in-
dependent machines. Since the combination of DNS and UDP is completely
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5 TCP PERFORMANCE

stateless this is a trivial thing to do. DNS over TCP is not stateless, the router
must make sure the complete connection is directed to precisely one of the servers.
Failing to do so would introduce failing or slow connections. Both routers should
handle this correctly.

4.1 Method

Both servers log all incoming TCP traffic on port 53. At one of the players a script
iterates over the addresses in the range 80.81.192.0/23 (508 unicast addresses).
For each of those addresses a virtual interface is created, a dig is ran 100 times
with the +tcp option while monitoring for failed connections, and finally the
interface is brought down again.

From both server captures all unique IP source addresses are extracted, these
two sets are then compared for overlapping sources. If the router is functioning
properly we expect both sets to be completely disjunct.

4.2 Result

Three addresses in the range where in use by other machines, the total amount
of unique tests was 505. While testing with the Juniper router 1 more address
was in use by on of the players. For both brand routers all connections succeeded
and no TCP fragments ended at an other server than the rest of the connection.
While testing with the Juniper router Server1 got offered slighly less connection
than Server2: 250/254. With the Cisco router this was divided 253/252.

5 TCP performance

Larger DNS replies may introduce problems for some in getting an answer via
UDP. An increase in TCP carried queries is to be expected due to TCP fallback
mechanisms. Since DNS server software is generally geared towards handling
UDP and TCP is significantly harder for the OS, it would be a good to have an
idea what a K-root instance is capable of in terms of TCP. The purpose of this
measurement is to find how many connections a K-root instance is able to handle
reliably.

5.1 Method

To test the amount of concurrent connections a server can handle a way to set
up these connections is needed. For this purpose we have created a C program
using libevent3 version 1.4.13. All network operations are in non-blocking mode.
As soon as an operation on a socket would block a new event is scheduled for
that socket. The event will trigger as soon as more data is available or a timeout
is reached. When the timeout occurs before the connection is fully handled (i.e.
answer is received and connection is closed) the connection is considered a failure.

3An event driven library to handle many simultaneous file descriptors.
http://www.monkey.org/˜provos/libevent/
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5 TCP PERFORMANCE

To ensure the Players maintain the connection rate, each event is scheduled at
an absolute time calculated from the start of the simulation. A check is done to
make sure every connection has enough time between initialization and timeout.
The scheduler is granted a 5 percent margin. In case a single connection does
not get enough time from the scheduler, the whole test is discarded from the
experiment. This ensures we would notice CPU usage becoming a bottleneck on
the players.

Although we are not interested in the answer itself, each connection must be
handled completely from start till end. Since both the servers and players are on
equal hardware, the player and the server will be roughly equally busy. To be on
the save side at least two player must be used when testing with a single server.

All tests ran for 30 seconds and where performed twice and averaged. A
measurement is done for increasing rates with a resolution of 100 queries per
second.

5.1.1 Player modifications

To increase the TCP performance on the players we have enabled
/proc/sys/net/ipv4/tcp_tw_recycle. Closed connections leave sockets in TIME-
WAIT state for a while. At the rates we are testing this would imply running
out of ephemeral ports in a few seconds. Setting tcp tw recycle allows the TCP
stack to reuse ports in this state.

In Unix a socket is represented by a file descriptor. Linux limits the amount
of file descriptors to 1024 per process. In order to maintain more simultaneous
connections we stretch this limit in our program using rlim. E.g., for 2000 con-
nections per second with a 2 second timeout we need to set the limit to at least
4000 file descriptors.

5.2 Results

5.2.1 One player, one server

We first start the test using only Player1 sending queries to Server1 (figure 5).
The server is able the answer all queries up to 8000qps after which the perfor-
mance will gradually decrease (1 permill start to fail at 7400qps and 1 percent
fails at 8400qps). At about 10600qps the handled connection drops dramatic,
and the plot becomes scattered. At this time there is no final answer what ex-
actly causes this effect. The following tests allow us to to find what element of
our system is causing the bottleneck.

5.2.2 Two players, one server

The second experiment uses the same replay rate but two players are used instead
of one. The effect is that each player has to do only half the work, but the same
bandwidth and server load are generated. Compared to figure 5, we have three
observations considering figure 6.
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Figure 5: TCP performance using 1 player and 1 server.

1. The performance degradation starts at around the same point. This implies
that either the network or the server are the cause for this characteristic,
not the players.

2. The performance decrease is in the new situation somewhat slower. With
two players the maximum rate is about 9400qps whereas with one player
this is around 9000qps. The behavior is expected since for TCP a player
has to do about the same work as the server.

3. The sudden performance drop moved from 10600 to 11900qps. Presumably
the bottleneck is shifted from the players to the server here as well. The
problem could also be sought in the network performance.
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Figure 6: TCP performance using 2 players and 1 server.

9



6 CONCLUSION

5.2.3 Two players, two servers

To test if the network (including the intermediate switch and router) is limiting
the performance, the experiment is repeated with two players and two servers
simulating in pairs. This are basically two independent experiments performed
simultaneously. The results (figure 7) is very much like the first TCP experiment
(figure 5) with all values doubled.

This can be used to show the network itself does not obstruct the experiments.
Also the players’ behavior does not seem to be affected by a busy network.
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Figure 7: TCP performance using 2 players and 2 servers.

The second TCP experiment (section 5.2.2) is the most accurate. The network
is shown to be able to handle at least twice the traffic needed for that experiment
and the performance drop is not caused by the players.

6 Conclusion

The UDP performance test was capped by the maximum network speed. Before
this ceiling was reached the servers did not show any sign of degradation. Both
routers performed equally well.

The average reply size for our query sample grows about 29 percent for a
signed root zone. For queries leading to NXDomain responses our sample has
a small portion of DNSSEC OK flags. Many of those queries are the result of
badly configured machines, which in many cases lack DNSSEC support.

Both router vendors advertize stateless load balancing. We see no signs either
of them effecting the performance of a K-root instance. Both routers seem to use
the IP source address as the only balancing metric. During the load balance test
(section 4) as well as during the other tests we have never observed unexpected
traffic towards one of the servers.

A single K-root server (i.e. half an instance) can handle at least 8,000 queries
per second continuously without any problem. Between that and 12K qps the
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success rate lowers to 80 percent. At higher rates the performance drops suddenly
towards 2500 to 3500 qps. Different tests have shown the network and the players
can handle at least twice as many queries per second. The exact reason of this
performance drop is not looked in to any further at this point.

It is good to note this are quite static lab experiments. As many (bogus)
queries as possible from the original trace are used to simulate clients. However
all the simulated clients where just one hop away. This causes all successful con-
nections to have an extremely short lifespan. Normally these connections would
occupy resources on the server for a longer time. In a production environment
the performance is likely to be much lower.

7 Future research

After these experiments there is no definite answer for the sudden performance
drop in the TCP tests. We suspect the cause is in the network stack of the server.
For DNS server operators such as RIPE NCC this isn’t much of a problem since
the expected TCP load is a few orders of magnitude lower. For NLnet Labs
however it is useful to know whether the problem is caused by NSD’s own code.

The UDP performance tests are limited by the networking hardware only
capable of 100 Mbps. Using a Gigabit network a better view on scalability can
be obtained. Also, the graphs show a strange outlier on roughly the same rate
for both routers. It could be a coincidence but also an artifact of unexpected
behavior.
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