
Extensible delegations in DNS Recursive resolvers
Jesse van Zutphen, University of Amsterdam

jzutphen@os3.nl

Supervisors: Willem Toorop, Yorgos Thessalonikefs & Philip Homburg

July 8, 2024

Abstract

This paper explores implementing an extensible delegation mechanism in the Domain Name System
(DNS) using only recursive resolver adaptations. The main question of this research is: ”Is an approach of
extensible delegation, that needs only resolver adaptation to bootstrap deployment, feasible to implement
and deploy?”. We introduce _deleg records for resolvers to dynamically discover delegation points without
changes to authoritative name servers. Our approach allows incremental deployment and supports legacy
systems. In our implementation, we found three query behaviors: no additional queries with upgraded name
servers, one additional query with Deleg data but no upgrade, and three queries when Extensible Delegation
support is unknown. Despite variations, query round trip times remain consistent due to parallelization.
What makes our method unique in comparison to the other Extensible Delegation draft, is the mode
where the name server is not upgraded to be able to support legacy systems. For this, one extra query
is needed. Analysis of the .nl zone suggests similar additional query loads comparable to DNSKEY queries,
approximately 0.50% of the total load. These results affirm the feasibility of our approach, justifying the
additional workload by the improved delegation efficiency and ease of deployment it offers.

Keywords— Domain Name Server, Extensible delegations, Recursive resolver, DNSSEC, Unbound,
Authoritative name server

1

1 Introduction

The design of the Domain Name System (DNS) is
more than 40 years old [1], [2]. Its primary goal at
the time was to facilitate the growth of the Internet
in a scalable manner, and it has certainly succeeded
in this regard. However, at the time, it did not and
could not possibly have anticipated the current day
Internet and how it is organized. The role of “DNS
Operators” was not anticipated and does not have a
place in the current DNS architecture.

As a result of recent discussions at the Inter-
net Corporation for Assigned Names and Num-
bers (ICANN) DNS Symposium (IDS) 2023 [3], the
41st DNS Operations Analysis and Research Centre
(DNS-OARC) workshop [4] and a DNS Hackathon
session at the 118th Internet Engineering Task Force
(IETF) conference [5], a new initiative has started
to revisit the way delegations are accomplished in
the DNS. This has resulted in the formation of a
new IETF DNS delegation working group for which
a charter [6] is currently being designed. Currently
there is at least one draft proposal by Tim April[7] to
be worked on in the new working group, which was
initiated during the 118th IETF DNS Hackathon.

The “Extensible Delegation for DNS” draft pro-
posal [7] introduces a new DNS Resource Record
(RR) type at the delegation zone cut, maintaining
the particularity in the DNS that the name of a del-
egation exists in both the parent and the child do-
main. The current proposal needs support in both
the serving authoritative name servers, as well as in
resolvers. We believe that an alternative approach
where the delegation information is provided not at
the zone cut, but authoritatively elsewhere in the
parent zone, reduces the deployment requirements by
needing support in the resolver only. Note that one of
the objectives of the DNS delegation working group
[6] is to “consider how well different solutions can be
deployed, and should study possible consequences of
deploying alternative delegation mechanisms”.

Our proposal is to implement a new extensible del-
egation mechanism (designed in collaboration with
staff at NLnet Labs), that needs implementation in
the resolver only. The evaluation of the implementa-
tion with respect to efficiency and deployability could
be valuable input for the first DNS delegation work-
ing group session that will have its first session at the
IETF 120 in Vancouver in July this year.

1.1 Paper structure
This paper is structured into ten chapters. Chapter
2 will go into the defined main research question and
supporting sub questions. Chapter 3 will describe
the scientific contributions that have been made dur-
ing this research. Chapter 4 provides context for the
research by delving into the background and describ-
ing related works. Chapter 5 describes the experi-
mental methodology by going over the experimental
setup and reproducible steps for collecting the data.
Chapter 6 represents the results of the experiments.
Chapter 7 discusses the results of Chapter 6 and in-
terprets them by adding additional context. Chapter
8 concludes the research and summarizes the findings
by referring back to the research questions. Chap-
ter 9 suggests areas for further research to build on
this research findings. Chapter 10 outlines the ethical
considerations of this research.

2 Research questions
This research focuses on an extensible delegation ap-
proach that strives for reduced deployment complex-
ity by needing only resolver software adaptation. A
proof of concept of the approach will be implemented
in the Unbound resolver software.

Main Research Question

• Is an approach of extensible delegation, that
needs only resolver adaptation to bootstrap de-
ployment, feasible to implement and deploy?

Sub-Questions

1. What does such an approach look like and how
would it work?

2. What resolver adaptations need to be made?

3. What is the performance impact of this approach
with respect to resolver workload and traffic?

4. How does this approach compare to the other
extensible delegation proposal?

3 Scientific contribution
During this research, I made an implementation of an
Extensible Delegation mechanism that only needs im-
plementation in the resolver. For as far as we know,

2

this is the very first Extensible Delegation implemen-
tation that is created. The other draft [8] has no sup-
porting code yet and has as far as we know, only a
specification in the form of an Internet Draft.

With this implementation, I have analyzed the per-
formance of our Extensible Delegation Mechanism
and compared it with the original draft.

In addition with this paper I am also working as
co-author of the ”Incrementally Deployable Extensi-
ble Delegation for DNS” Internet Draft [9], which is a
proposal by Nlnet Labs to implement Extensible Del-
egations.The results from this research are used as a
baseline for the Incrementally Deployable Extensible
Delegation for DNS specification.

4 Background & Related works
4.1 DNS and delegations
The Domain Name System (DNS) is a critical com-
ponent of the Internet’s infrastructure, providing
the necessary service of translating human-readable
domain names (e.g., www.nlnetlabs.nl) into IP ad-
dresses that, for example, a web browser uses to iden-
tify their destination on the Internet. DNS operates
in a hierarchical structure consisting of the root zone,
top-level domains (TLDs), second-level domains, and
so on. Each level of the hierarchy may be managed by
different parties, and may be served by different au-
thoritative servers. The delegation of authority from
one level to the next is crucial for the distributed
management of the DNS.

In traditional DNS delegation, the parent zone del-
egates authority to the child zone using NS (Name
Server) records. These records are placed at the
”zone cut”, the boundary between the parent and
child zones. An NS record specifies the authoritative
name servers for the child zone. Additionally, if DNS
Security Extensions (DNSSEC) are in use, a DS (Del-
egation Signer) record is included at the parent zone.
The DS record contains a hash of the DNSKEY record
from the child zone, establishing a chain of trust from
the parent zone to the child zone.

For instance, the delegation of the zone
child.example.com from example.com involves
adding NS records for child.example.com in the
example.com zone file. If DNSSEC is enabled, a
DS record for child.example.com is also included in
example.com to ensure cryptographic validation of
the child zone’s data.

4.2 Challenges in normal delegation
In a traditional DNS setup, when a DNS query is
made for a subdomain, the parent domain’s DNS
server provides a referral to the authoritative DNS
server of the child domain. However, a significant
issue arises in this delegation process: the parent do-
main is not authoritative over the Name Server (NS)
records in the referral. This also means that the par-
ent does not sign these records and thus cannot be
checked with DNSSEC. The consequence of this is
that clients must trust this referral without a way to
verify the authenticity of the child zone’s NS record.
This makes the name server prone to on-path substi-
tution attacks[10].

Another problem is that both NS record at the
parent and child should be consistent with each
other. RFC 1034, Section 4.2.2[11] states the follow-
ing about this: ”As the last installation step, the del-
egation NS resource records and glue resource records
necessary to make the delegation effective should be
added to the parent zone. The administrators of both
zones should insure that the NS and glue resource
records which mark both sides of the cut are consis-
tent and remain so”. But in practice mistakes happen
with keeping the delegations consistent. Research by
Raffaele Sommese[12] delves into NS record inconsis-
tency between the parent and child. This research
shows that roughly 8% of the zones have an inconsis-
tency between the parent and child NS records. The
consequences of this are improper load balancing, in-
creased latency, and unresponsive name servers.

Figure 1: Authority of NS records

4.3 Extensible Delegations
To solve the problems of normal delegations, the
Deleg draft[7] creates a new Resource Record at the
parent side of the delegation. This Resource Record

3

can be used as a referral response and also adds the
IP addresses in the response, making glue records un-
necessary. It also has the capability to add transport
protocol capabilities. This makes it possible to im-
mediately set up an encrypted channel to the child
server. An example of such a Deleg record can be
found in figure 2. This resource record is based on
the RFC 9460 SVCB record[13].

c1.example.org. 86400 IN DELEG 1 config3.
example.net. (alpn=dot ipv4hint
=192.0.2.54)

Figure 2: draft Deleg record [7]

What this resource record indicates is that
c1.example.org is a delegation point in the current
zone. This server can be reached at IPv4 address
192.0.2.54 and should be queried with DNS over TLS.
Since unlike the traditional NS record, the parent is
authoritative over this record. The record should also
be DNSSEC signed and should also have the associ-
ated RRSIG records. Next to signing the delegation
and being able to signal the transport protocol, there
is also a third reason to implement extensible dele-
gations. The service hosting industry makes exten-
sive use of the CNAME records. CNAME records have
the capability to give an individual name a different
alias, which can be used to alias a name to a name
within the zone of a service hosting entity, giving
them administrative control over that name. The
drawback with CNAME records is that according to
RFC 2181 Section 10.3[14], CNAME records cannot be
used to alias an NS record. SVCB records also have an
alias mode, but this is allowed at the zone apex as
well. This construct can be used to give administra-
tive control of the entire authoritative name server to
a DNS operator. Who can then make modifications
to the authoritative name server without the need to
notify the parent zone.

4.3.1 Alternatives for Deleg

There are also alternatives for Deleg. One of them
is proposed in the draft for Delegation Revalidation
[15]. This draft suggests sending an extra query
in parallel to acquire the child domain NS resource
record set. This way, the resolver will get the child’s
part of the delegation and be able to DNSSEC verify
if the delegation that has been made is correct. Still,
this does mean that a query needs to be made to an

Figure 3: Authority of NS records with extensible
delegations

”untrusted” authoritative name server. With Exten-
sible Delegations, it is possible to proactively check
whether the delegation is DNSSEC secure.

Another alternative was proposed by Fujiwara
Kazunori in the draft for delegation information
signer [16]. Here, a new Resource Record is added
to the parent zone that contains a signed hash of the
delegation so that Resolvers can validate whether the
delegation is correct or not.

To sum up, there are other proposals to vali-
date the delegation, but what Extensible Delegations
makes unique is that it adds a way to signal the use
of encrypted protocols like DNS over TLS, and it also
adds the capability of aliasing delegations.

4.3.2 Disadvantages other Extensible Delega-
tions draft

The main disadvantages of the Deleg draft by Tim
April are based on the fact that the Deleg record is
located at the zone cut. This is similar to how the
DS resource record has been implemented at the zone
cut [17]. According to DNS pioneer Paul Vixie [18],
putting the DS at the zone cut was a mistake. The
reason for this is that it adds confusion and complex-
ity. A delegation strongly implies that the child is
authoritative for these records. The DS record is the
exception for that, and with the current extensible
delegation proposal, it seems like the same exception
will be made for the DELEG record. The draft says the
following about this [7]: ”The DELEG resource record
type is unusual in that it appears only on the parent
zone’s side of a zone cut. For example, the DELEG
RRset for the delegation of ’foo.example’ is part of
the ’example’ zone rather than in the ’foo.example’
zone. This requires special processing rules for both
name servers and resolvers because the name server
for the child zone is authoritative for the name at the

4

zone cut by the normal DNS rules, but the child zone
does not contain the DELEG RRset.” The consequence
of this can be that certain resolvers will return BO-
GUS. The reason for that is that it is unexpected to
have records at the zone cut that are signed by the
parent, as this is normally done by the child. Because
of that, it is likely that legacy resolvers will not be
able to DNSSEC verify these records.

Another disadvantage that comes with having the
record at the zone cut is how to prove the existence of
the Deleg record. The other Extensible Delegation
draft does this by using a flag in the DNSKEY. When
this flag is set, it means that the name server un-
derstands Extensible Delegations, and should return
the NSEC records that prove that the Deleg record
does not exist. This adds some complications since
the DNSKEY was never designed to be used for sig-
naling, so this is a hack. As a result of this, since
the DNSKEY record is in the child zone, the child de-
termines whether the parent uses Extensible Delega-
tions. While normally the child has no input about
what happens at the parent zone. This also means
that before upgrading to Extensible Delegations, co-
ordination is needed with the child name server. An-
other result of using the flag in the DNSKEY is that
since this flag is binary, when this flag is on, all name
servers that serve this zone need to be upgraded to
support Deleg records at the zone cut. When there is
a zone that is hosted by a lot of different name servers
this can result in an administrative challenge. Lastly,
because the draft expects the Deleg resource record
to be added in the authority section of the query re-
sponse, this needs additional logic inside the name
server. The consequence of this is that the name
server has to be upgraded in order to use Extensible
Delegations, which is unfeasible for all name servers,
since there will always be legacy software around.

5 Methodology
This section will focus on the proposed algorithm to
implement extensible delegations in the recursive re-
solver and also on how the experiments are structured
to test this implementation.

5.1 Custom extensible delegation al-
gorithm

For this research, we defined our own extensible del-
egation algorithm that enhances the traditional del-

egation mechanism. The purpose and objective of
this algorithm is to implement extensible delegations
without the need to add records at the zone cut, re-
quiring only logic changes in the recursive resolver
and no changes in the authoritative name server.

5.1.1 Algorithm design

For our designed algorithm, we do not want the
name server to add a record at the zone cut, in-
stead, what we did was add an SVCB record in the
parent zone of the delegation. The format of the
name of the record is as follows: ”{child zone delega-
tion name}._deleg.{FQDN of the parent}” in figure
4 is an example of such record for the .nl zone that
has a delegation to nlnetlabs.nl.

nlnetlabs._deleg.nl SVCB 1
ns.nlnetlabs.nl ipv4hint=185.49.140.60

ipv6hint=2a04:b900::8:0:0:60

Figure 4: _deleg record in the .nl zone

When the recursive resolver wants to resolve a
query, it first checks its cache for information about
the authoritative name server at the current delega-
tion point. The resolver determines whether:

1. The authoritative name server has been up-
graded to support the new delegation mecha-
nism.

2. The authoritative name server has not been up-
graded, but the zone file contains _deleg records.

3. The authoritative name server has not been up-
graded, lacks _deleg records in its zone, or the
resolver has no cached information about this
server.

At this point, the resolver can be in one of three
states regarding its knowledge about the authorita-
tive name server:

1. Support in the name server is unknown:
If the resolver has no information about support in
the name server, nor about whether or not a _deleg
label exists at the apex of the target zone, it sends
three queries in parallel:

• An SVCB query for _deleg at the apex of the
zone. This query helps determine if the zone
may contain _deleg records. The result is cached

5

Figure 5: State machine extensible delegation algorithm

for future use. If the response is NXDOMAIN,
it indicates no _deleg records in the zone. If
the response is NODATA, it signifies Extensible
Delegation data exists within the zone.

• A query for <child>._deleg.<parent>, checking
if there are specific _deleg records for the child
zone.

• A standard query to obtain an NS or SVCB
RRset. This query is used to fallback on NS
records when Extensible Delegations are not sup-
ported, or to receive an SVCB RRset in the
authority section if the authoritative server has
been upgraded. If a SVCB RRset containing re-
ferral information is in the authority section of
the referral response, the resolver caches this in-
formation, indicating that the name server sup-
ports extensible delegations and thus no addi-
tional queries are needed when this server gets
queried again.

Queries are sent in parallel because the DNS protocol
restricts sending multiple queries in a single packet
(QDCOUNT must be set to one) [19]. Parallel query-
ing ensures the resolver maintains an equal number
of round trips.

2. Legacy name server with _deleg Data

in the zone: If the resolver knows that the zone
contains _deleg records but the name server is not
upgraded, it sends two parallel queries:

• A query for ’<child>._deleg.<parent>’.

• A standard query to obtain the legacy referral in-
formation. The result of the _deleg query takes
priority. The NS RRset is used if this specific
delegation has not been made (yet) for Exten-
sible Delegations. Additionally, the standard
query is necessary for DNSSEC to retrieve the
DNSKEY record.

3. Name server with support for extensible
delegations: If the resolver has cached information
indicating that the name server has support for ex-
tensible delegations, it sends only the standard query.
The authoritative section of the response will contain
the SVCB RRset (or proof of non-existence) for the
extensible delegation.

The algorithm has been implemented in Unbound
version 1.20.1 and the code can be found at my
Github [20]. The state machine for this algorithm
can be found in figure 5.

6

5.1.2 Advantages/disadvantages implemen-
tation

An interesting aspect of this algorithm is that Query
Name Minimisation [21] is inherently part of it. The
reason is that for every query to get the delega-
tion, only the delegation name of the child is sent
to the parent instead of the entire query. This re-
sults in the same behavior as Query Name Minimisa-
tion. Recent research by Jonathan Magnusson et al.
[22] has shown that Query Name Minimisation adop-
tion is at 64%. Implementing our proposed Extensi-
ble Delegation method could increase this adoption.
However, requiring Query Name Minimisation could
also be a disadvantage. A 2015 study by Shumon
Huque showed that 12.8% of Query Name Minimisa-
tion queries failed [23].

The main disadvantage of our Extensible Delega-
tion method is that extra queries need to be made in
order to find out if the name server supports Extensi-
ble Delegations and whether the target zone contains
Extensible Delegations. The result of that is that the
load of name servers will increase.

5.2 Experiments & Testing
5.2.1 Experimental objectives

To evaluate the impact of the new delegation mech-
anism on the workload of recursive DNS resolvers, a
controlled experimental environment has been estab-
lished. This environment consists of custom root and
TLD servers, and a multi-level delegation hierarchy.
The goal of this experiment is to first test the correct-
ness of the implemented algorithm. And secondly to
analyze the performance of this new algorithm. We
do this by analysing the amount of queries that is
needed to perform in order to resolve a query and the
amount of round trips that are needed. These metrics
are chosen because the amount of queries signify the
added load that Authoritative Name Servers need to
handle and we know that our solution will add extra
queries. For the amount of round trips is chosen be-
cause this signifies the time it will take for a query to
resolve and thus the performance of the algorithm.
Here we compare the following cases: normal dele-
gations without Query Name Minimisation, normal
delegations with Query Name, our Extensible Dele-
gation implementation (best and worst case) and the
draft for Extensible Delegations by Tim April [8]. We
have chosen normal delegations without Query Name
minimisation to act as a base case. We use normal

delegations with query name because, as mentioned
earlier, our implementations behaves in a similar way
as Query Name Minimisation and its interesting to
see if we also get a similar amount of queries that
have to be done. We also have a test case for the
other draft of Tim April to compare with. This is
interesting to see how to different implementations
measure up with each other.

We specifically chose for the amount of queries as
metric for the experiments because this is the main
disadvantage of our implementation as described in
Section 5.1.2.

5.2.2 Infrastructure setup

For the experiments the following setup has been cre-
ated:

• A root server

• A Top Level Domain server (serving the .nl.
zone)

• Nlnetlabs server (serving the nlnetlabs.nl. zone)

• Zagreb server (serving the zagreb.nlnetlabs.nl.
zone)

In this setup there is also a recursive resolver. This
recursive resolver is running Unbound version 1.20.1
with the additions to the code to use the implemented
Extensible Delegation algorithm.

in figure 6 the experimental setup is visualized. To
reproduce the experiments, the used zone files can be
found in appendix a.1.

5.2.3 Experimental procedure

For the experiments, the recursive resolvers will query
for ’TXT test.zagreb.nlnetlabs.nl’. This ensures that
all the delegations of the test environment are fol-
lowed. By querying a TXT record instead of an
A record, we can observe the full behavior of the
QNAME minimisation aspect of the algorithm. The
algorithm will send A queries to higher-level domains
to anonymize the type of record being requested.

In these experiments, the cache of the recursive
resolver will be empty, except for the cached root
zone after root priming. Root priming is an essential
preliminary step that typically occurs before query-
ing. By ensuring that other zones are not pre-cached,
we can accurately analyze the resolver’s behavior as

7

Figure 6: Experimental setup

it queries all the name servers in our test environ-
ment. This setup allows for an assessment of the
algorithm’s performance and impact when the name
servers have not been upgraded. Also, by having the
cache empty, we can assess our algorithm in the worst
case, since it has no data in its cache about whether
the name servers have Extensible Delegation support
or whether there is Extensible Delegation data in the
zone. With this, we can assess the query overhead of
our algorithm in the least favorable situation.

6 Results
6.1 Resolver behaviour
After analysing the behavior of incremental deploy-
able Deleg within the experimental setup we are able
to define that the amount of queries is dependent on
three boolean variables:

• (_) _deleg is present in the apex of the parent
zone, or it is not present.

• (A) The authoritative name server that serves
the parent supports Extensible Delegations.

• (S) The parent zone is secure, or it is insecure.

The resolver will always have to perform one addi-
tional query for _deleg per zone when it is not cached
yet, regardless of whether this name server supports
Extensible Delegations. Once the resolver determines
if the name server supports Extensible Delegations, it
will follow the behavior shown In table 1. The query
behavior is dependent on the three different boolean
values.

6.2 Performance
To evaluate the performance, we compared our al-
gorithm to the base case of Query name minimi-
sation within the test environment. The compari-
son for a resolver with an empty cache and no in-
formation about support at the authoritative name
servers is shown in Appendix a.2. In our test sce-
nario, we observed that our solution requires addi-
tional queries. Incremental deployable Deleg needs
12 queries, while the base case of QNAME minimiza-
tion needs 5 queries. The round trip time remains the
same at 5. The increased number of queries is a result
of the extra steps needed to handle when the name

8

Table 1: Table of query behavior
_ A S Query behavior

No additional <child>._deleg.<parent> queries
X No additional <child>._deleg.<parent> queries

X No additional <child>._deleg.<parent> queries
X X No additional <child>._deleg.<parent> queries

X Parallel legacy and <child>._deleg.<parent> queries (for every query)
X X Parallel legacy and <child>._deleg.<parent> queries (for every query)
X X -Assume no _deleg awareness initially, and act as if the auth is not _deleg aware (parallel legacy

and <child>._deleg.<parent> queries (for every query).
-Assume _deleg awareness when <child>._deleg.<parent> SVCB for the delegation is seen in the
authority section in the referral response. Assume awareness for the duration of the TTL of the
_deleg SVCB RRset.
-When _deleg awareness is assumed, only do legacy queries and expect the
<child>._deleg.<parent> SVCB RRset in the authority section (if it exists)

X X X Assume no _deleg awareness initially, and act as if the name server is not _deleg aware (parallel
legacy and <child>._deleg.<parent> queries (for every query).
-Assume _deleg awareness when a signed <child>._deleg.<parent> SVCB for the delegation is
seen in the authority section in the referral response, or a DNSSEC proof of non-existence of such
RRset.
-Assume awareness for the duration of the TTL of the _deleg SVCB RRset or the TTL of the
NSEC(3) proofing the non-existence.
-When _deleg awareness is assumed, only do legacy queries and expect a signed
<child>._deleg.<parent> SVCB RRset in the authority section, or a proof of non-existence for
that RRset. If neither are present, do a follow up query for <child>._deleg.<parent>.

server does not have support for Extensible Delega-
tions. The conventional query returning the legacy
conventional referral information needs to remain for
fallback (when there is no extensible delegation) and
also for the DS RRset for DNSSEC. Also because the
cache is empty and thus the resolver does not know
that there is Extensible Delegation data in the zone,
there is another extra query needed to _deleg. But
because all the extra queries that are needed can be
sent in parallel, this will not affect the round trip
time.

7 Discussion

7.1 Performance impact of additional
queries

One of the critical findings from our experiment
is that incremental deployable Deleg requires more
queries than QNAME minimization. Specifically, our
implementation needs 12 queries (in the worst case)
compared to the 5 required by QNAME minimiza-
tion. However, both approaches maintain the same
number of round trips, indicating that the overall

resolution time is not negatively impacted. The ac-
ceptability of additional DNS queries has been a sub-
ject of study in various contexts. For instance, DNS
over QUIC (DoQ) introduces additional queries for
encryption and security purposes, yet according to a
study by Mike Kosek et al. [24] it maintains perfor-
mance comparable to traditional DNS methods. This
suggests that modern DNS infrastructure can han-
dle extra queries in parallel efficiently without signif-
icantly degrading performance.

Most of these extra queries were needed because
we were using a cold cache. After the query for _de-
leg at the apex was cached, our solution would have
only needed an extra query per delegation (and if
there was no _deleg, data no extra queries would be
needed). This query behavior is similar to the DNSKEY
query behavior. For instance, on July 1st, 2024,
0.50% of queries in the .nl zone were for the DNSKEY
resource record [25]. In the case for the DNSKEY the
extra query is generally accepted by the DNS commu-
nity due to the security benefits [26]. Our solution’s
additional queries can be similarly justified by the im-
proved delegation efficiency and ease of deployment
it offers.

9

7.2 Comparison with other Extensible
Delegation draft

Our solution requires more queries than the other
Extensible Delegation draft, particularly during the
transition period when name servers do not yet sup-
port Extensible Delegations. However, this compar-
ison is not entirely fair, as the original draft does
not accommodate this transitional mode. Once name
server support is established, our method requires no
additional queries. Only when the resolver has to find
out if there is Extensible Delegation support from the
name server or zone, are there two additional queries
needed to gather this information for the cache.

8 Conclusion
This research set out to investigate the feasibility
of an extensible delegation approach that requires
only resolver adaptation to bootstrap deployment.
In this Section we will reflect on the research ques-
tions defined in Section 3. To start with the first
sub-question: ”What Does Such an Approach Look
Like and How Would It Work?”. The approach that
we defined involves querying for _deleg records as the
first step in the delegation process. If these records
are found, the resolver uses the provided SVCB record
hints for IPv4 or IPv6 addresses to determine the
new delegation point. If the _deleg records are not
found, the resolver falls back on standard DNS res-
olution procedures. This dual-path mechanism en-
sures backward compatibility and allows gradual de-
ployment without requiring changes to authoritative
name servers.

For the second sub-question: ”What Resolver
Adaptations Need to Be Made?”. The main adap-
tation needed in recursive resolvers is the ability to
query and interpret _deleg queries and handle SVCB
records to extract delegation hints. This involves
modifying the resolver’s query logic to include an
additional step for _deleg queries and parsing the
RRsets accordingly to change the delegation point
based on the fully qualified target name and Svc-
Params. The implementation was implemented into
the Unbound resolver version 1.20.1, which can be
found on GitHub [20]. In addition to the code, a test
bed has been created to verify the behavior of the
resolver and reproduce the results.

The third subquestion was: ”What Is the Perfor-
mance Impact of This Approach with Respect to Re-

solver Workload and Traffic?”. Our custom imple-
mentation increases the number of DNS queries per
resolution process but maintains the same number of
round trips as QNAME minimization. Specifically,
with name server support, only one additional query
per zone, is required, which is comparable to the
DNSKEY queries used in DNSSEC. For the .nl zone,
this resulted in an increase in query load (0.50%).
When there is no name server support but Deleg
data in the zone, two queries are needed per zone,
and when there is no Deleg data and no name server
support, three queries are needed.

Previous research by Mike Kosesk et al. has shown
that modern DNS can handle additional queries in
parallel without significantly reducing the perfor-
mance. This demonstrates that the additional work-
load introduced by our solution is manageable within
modern DNS infrastructures.

The last subquestion was: ”How Does This Ap-
proach Compare to the other Extensible Delegation
Proposal?”. The only fair comparison to be made be-
tween our implementation and the original draft is
when there is name server support, because that is
the only mode that the original draft supports. In
this case, our implementation needs one more query
because of the trade-off of not using the DNSKEY as a
signaling mechanism. But the round trip time stays
the same regardless.

Finally, to conclude the main question: ”Is an ap-
proach of extensible delegation, that needs only re-
solver adaptation to bootstrap deployment, feasible to
implement and deploy?”. The results of our experi-
ments and performance evaluations affirm that this
approach is indeed feasible.

Our implementation of the extensible delegation
mechanism using _deleg in the parent zone demon-
strated that necessary adaptations to recursive re-
solvers can be integrated by adding additional logic.
Performance evaluations showed that while the new
mechanism increases the number of queries, it does
not significantly impact resolution times due to effi-
cient query handling and parallel processing capabili-
ties. This ensures that the overall impact on resolver
workload is manageable. Additionally, the ease of
deployment is a significant advantage. By requiring
changes only at the resolver level, our solution can be
gradually rolled out without disrupting existing DNS
operations, facilitating incremental adoption. This
incremental deployment capability reduces the risk
associated with widespread changes and makes it pos-
sible to adopt Extensible Delegations even when us-

10

ing legacy systems.

9 Future works
This research has mainly been focused on adapting
recursive resolvers to implement the extensible dele-
gation mechanism using _deleg records. While this
approach has proven feasible and effective, this re-
search was only focused on making Extensible Dele-
gations work by making modifications to the recur-
sive resolvers. To further expand our testbed, re-
search can be done on how to upgrade the name
servers to implement Extensible Delegations. This
would reduce the number of queries needed and im-
prove the overall efficiency of the DNS resolution pro-
cess.

Another future work could be to monitor the de-
ployment rate of Extensible Delegations by querying
TLD’s in a cron job to gather statistics about the
current deployment. Similar research has been done
for the deployment of DNSSEC [27] and DANE [28].

10 Ethical paragraph
For this research, we have delved into a new way of
implementing DNS Extensible delegations into Un-
bound. DNS is a critical component of the internet
architecture. Advancements into DNS can affect mil-
lions of people around the world. Because of this
the implementation, needs to be well documented be-
cause transparency is important in order for my work
to be reviewed and possible be reused later on.

Lastly, my research has not involved any user data
and all my tests have been done on isolated domains
allocated for the purpose of testing the implemen-
tation. No critical infrastructure has been handled
during my research and the impact on real world op-
erations has been minimal.

11

References
[1] P. Mockapetris, Domain names: Concepts and

facilities, RFC 882, Nov. 1983. doi: 10.17487/
RFC0882. [Online]. Available: https : / / www .
rfc-editor.org/info/rfc882.

[2] P. Mockapetris, Domain names: Implementa-
tion specification, RFC 883, Nov. 1983. doi: 10.
17487/RFC0883. [Online]. Available: https://
www.rfc-editor.org/info/rfc883.

[3] ICANN, ICANN DNS Symposium. [Online].
Available: https://www.icann.org/ids.

[4] OARC, OARC 41. [Online]. Available: https:
//indico.dns-oarc.net/event/47/.

[5] IETF, IETF 118 Hackathon. [Online]. Avail-
able: https : / / www . ietf . org / meeting /
hackathons/118-hackathon/.

[6] IETF, Dns delegation, 2024. [Online]. Avail-
able: https://datatracker.ietf.org/doc/
charter-ietf-deleg/.

[7] IETF, Extensible delegation for dns, 2024. [On-
line]. Available: https://datatracker.ietf.
org/doc/draft-dnsop-deleg/.

[8] R. Weber, Draft extensible delegation for dns.
[Online]. Available: https : / / github . com /
fl1ger/deleg.

[9] P. Homburg, J. van Zutphen, and W. Toorop,
Incrementally deployable extensible delegation
for dns, 2024. [Online]. Available: https : / /
nlnetlabs.github.io/incremental-deleg/
draft-homburg-deleg-incremental-deleg.
html.

[10] J. Abley, “REFER: A New Referral Mechanism
for the DNS,” Internet Engineering Task Force,
Internet-Draft draft-jabley-dnsop-refer-00, Feb.
2021, Work in Progress, 14 pp. [Online]. Avail-
able: https://datatracker.ietf.org/doc/
draft-jabley-dnsop-refer/00/.

[11] Domain names - concepts and facilities, RFC
1034, Nov. 1987. doi: 10.17487/RFC1034. [On-
line]. Available: https://www.rfc- editor.
org/info/rfc1034.

[12] R. Sommese, When parents and children dis-
agree: Diving into dns delegation inconsistency.
[Online]. Available: https : / / ris . utwente .
nl / ws / portalfiles / portal / 237707586 /
Sommese2020when.pdf.

[13] B. M. Schwartz, M. Bishop, and E. Nygren,
Service Binding and Parameter Specification
via the DNS (SVCB and HTTPS Resource
Records), RFC 9460, Nov. 2023. doi: 10 .
17487/RFC9460. [Online]. Available: https://
www.rfc-editor.org/info/rfc9460.

[14] R. Elz and R. Bush, Clarifications to the DNS
Specification, RFC 2181, Jul. 1997. doi: 10 .
17487/RFC2181. [Online]. Available: https://
www.rfc-editor.org/info/rfc2181.

[15] S. Huque, P. A. Vixie, and W. Toorop, “Delega-
tion Revalidation by DNS Resolvers,” Internet
Engineering Task Force, Internet-Draft draft-
ietf-dnsop-ns-revalidation-06, Mar. 2024, Work
in Progress, 10 pp. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-
dnsop-ns-revalidation/06/.

[16] K. Fujiwara, “Delegation Information (Refer-
rals) Signer for DNSSEC,” Internet Engineer-
ing Task Force, Internet-Draft draft-fujiwara-
dnsop-delegation-information-signer-00, Nov.
2020, Work in Progress, 6 pp. [Online]. Avail-
able: https : / / datatracker . ietf . org /
doc / draft - fujiwara - dnsop - delegation -
information-signer/00/.

[17] S. Rose, M. Larson, D. Massey, R. Austein, and
R. Arends, Resource Records for the DNS Secu-
rity Extensions, RFC 4034, Mar. 2005. doi: 10.
17487/RFC4034. [Online]. Available: https://
www.rfc-editor.org/info/rfc4034.

[18] Encrypted DNS Policy and Technical Call. [On-
line]. Available: https : / / 419 . consulting /
encrypted- dns/f/deleg- the- hairy- dns-
camel.

[19] R. Bellis and J. Abley, In the dns, qdcount is
(usually) one, Feb. 2023. [Online]. Available:
https://www.ietf.org/archive/id/draft-
bellis-dnsop-qdcount-is-one-00.html.

[20] J. van Zutphen, Implementation ex-
tensible delegations in unbound,
https://github.com/jessevz/unbound, 2024.

[21] S. Bortzmeyer, R. Dolmans, and P. E. Hoff-
man, DNS Query Name Minimisation to Im-
prove Privacy, RFC 9156, Nov. 2021. doi: 10.
17487/RFC9156. [Online]. Available: https://
www.rfc-editor.org/info/rfc9156.

12

[22] J. Magnusson, M. Muller, A. Brunstrom, and
T. Pulls, “A second look at dns qname mini-
mization,” in Passive and Active Measurement,
A. Brunstrom, M. Flores, and M. Fiore, Eds.,
Cham: Springer Nature Switzerland, 2023,
pp. 496–521, isbn: 978-3-031-28486-1.

[23] S. Huque, Query name minimization and au-
thoritative dns server behavior. [Online]. Avail-
able: https://indico.dns-oarc.net/event/
21/contributions/298/attachments/267/
487/qname-min.pdf.

[24] M. Kosek, L. Schumann, R. Marx, T. V.
Doan, and V. Bajpai, Dns privacy with speed?
evaluating dns over quic and its impact on web
performance, May 2023. [Online]. Available:
https : / / www . marilia . unesp . br / Home /
Instituicao / Docentes / RosangelaCaldas /
topicosdesenvolvimentodoensaiocientifico/
book---scientific-writing.pdf.

[25] S. labs, Dns statistics, Jul. 2024. [Online]. Avail-
able: https://stats.sidnlabs.nl/en/dns.
html.

[26] S. Rose, M. Larson, D. Massey, R. Austein,
and R. Arends, DNS Security Introduction and
Requirements, RFC 4033, Mar. 2005. doi: 10.
17487/RFC4033. [Online]. Available: https://
www.rfc-editor.org/info/rfc4033.

[27] ICANN, Dnssec deployment. [Online]. Avail-
able: https://ithi.research.icann.org/
graph-m7.html.

[28] G. M. University, Global dnssec deployment
tracking. [Online]. Available: https : / /
secspider.net/growth.html.

13

A Appendix
A.1 Zone files

$ORIGIN .
$TTL 3600
@ SOA root-server jesse.zagreb.nlnetlabs.nl (

2024061300 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
604800 ; expire (1 week)
3600 ; minimum (1 hour)

)
@ NS root-server
root-server A 152.42.143.251
root-server AAAA 2a03:b0c0:2:d0::1630:7001
_deleg SVCB 1 root-server ipv4hint=152.42.143.251 ipv6hint=2a03:b0c0:2:d0::1630:7001

;; nl delegation
nl._deleg SVCB 1 ns.dns.nl. ipv4hint=178.62.197.215 ipv6hint=2a03:b0c0:2:d0::1605:a001

;; Legacy nl delegation
nl NS ns.dns.nl
;; Glue
ns.dns.nl. A 178.62.197.215
ns.dns.nl. AAAA 2a03:b0c0:2:d0::1605:a001

Listing 1: root zone

$ORIGIN nl.
$TTL 3600
@ SOA ns.dns jesse.zagreb.nlnetlabs (

2024061300 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
604800 ; expire (1 week)
3600 ; minimum (1 hour)

)
;; Legacy NS entry.
@ NS ns.dns
ns.dns A 178.62.197.215
ns.dns AAAA 2a03:b0c0:2:d0::1605:a001

_deleg SVCB 1 ns.dns.nl. ipv4hint=178.62.197.215 ipv6hint=2a03:b0c0:2:d0::1605:a001

;; nlnetlabs.nl delegation
nlnetlabs._deleg SVCB 1 ns.nlnetlabs ipv4hint=185.49.140.60 ipv6hint=2a04:b900::8:0:0:60

;; Legacy nlnetlabs.nl delegation
nlnetlabs NS ns.nlnetlabs
;; Glue
ns.nlnetlabs A 185.49.140.60
ns.nlnetlabs AAAA 2a04:b9

Listing 2: nl. zone

14

$TTL 10200 ; 3 hours
$TTL 240 ; 4 minutes
$ORIGIN nlnetlabs.nl.

@ IN SOA ns hostmaster (
2024061600 ; Serial

28800 ; Refresh 8 hours
7200 ; Retry 2 hours

604800 ; Expire 7 days
240 ; Minimum 1 hours

)

nameservers IN SVCB 1 ns ipv4hint=185.49.140.60 ipv6hint=2a04:b900::8:0:0:60
IN SVCB 1 ns.nlnetlabs.org. ipv4hint=185.49.141.53 ipv6hint=2a04:b900:0:100::53

zagreb._deleg IN SVCB 1 ns.zagreb ipv4hint=145.100.104.181 ipv6hint
=2001:610:158:1046:145:100:104:181

yorgos._deleg IN SVCB 0 nameservers
jesse._deleg IN SVCB 0 config.zagreb
willem._deleg IN SVCB 0 zagreb._deleg
philip.homburg._deleg IN SVCB 0 config.zagreb

legacy-deleg IN NS ns.legacy-deleg
ns.legacy-deleg IN A 145.100.104.181
ns.legacy-deleg IN AAAA 2001:610:158:1046:145:100:104:181

Listing 3: nlnetlabs zone

$ORIGIN zagreb.nlnetlabs.nl.
$TTL 86400

@ IN SOA ns.zagreb.nlnetlabs.nl. jessevz@nlnetlabs.nl (2024060601
3600
1800
1209600
86400

)
IN NS ns.zagreb.nlnetlabs.nl.
IN NS ns.legacy-deleg.nlnetlabs.nl.

config.zagreb.nlnetlabs.nl 86400 IN SVCB 1 . (ipv4hint=145.100.104.181 ipv6hint
=2001:610:158:1046:145:100:104:181)

config.zagreb.nlnetlabs.nl. IN A 145.100.104.186
zagreb.nlnetlabs.nl. IN A 145.100.104.199
test IN TXT "text record for experiments"

Listing 4: zagreb zone

A.2 Query performance

15

Table 2: Table of performance incremental Deleg
Query → / ← Response

rt Incremental deployable Deleg Qname minimization name server
1 nl. A →

← nl.NS

nl._deleg . SVCB →

← nl._deleg.SVCB

nl. A →

← nl. NS

root

2 nlnetlabs.nl. A →

← nlnetlabs.nl. NS

_deleg.nl. SVCB →

← _deleg.nl. (NODATA)

nlnetlabs._deleg.nl. SVCB →

← nlnetlabs._deleg.nl. SVCB

nlnetlabs.nl. A →

← nlnetlabs.nl. NS

.nl.

3 zagreb.nlnetlabs.nl. A →

← zagreb.nlnetlabs.nl. NS

_deleg.nlnetlabs.nl. SVCB →

← _deleg.nlnetlabs.nl. (NODATA)

zagreb._deleg.nlnetlabs.nl. SVCB →

← nlnetlabs._deleg.nlnetlabs.nl. SVCB

zagreb.nlnetlabs.nl A →

← zagreb.nlnetlabs.nl. NS

nlnetlabs.nl.

4 test.zagreb.nlnetlabs.nl. A →

← test.zagreb.nlnetlabs.nl. (NODATA)

_deleg.zagreb.nlnetlabs.nl. SVCB →

← _deleg.zagreb.nlnetlabs.nl.
(NXDOMAIN)

test._deleg.zagreb.nlnetlabs.nl. SVCB →

← test._deleg.zagreb.nlnetlabs.nl.
(NXDOMAIN)

test.zagreb.nlnetlabs.nl. A →

← test.zagreb.nlnetlabs.nl. (NODATA)

zagreb.nlnetlabs.nl.

5 test.zagreb.nlnetlabs.nl. TXT →

← test.zagreb.nlnetlabs.nl. TXT

test.zagreb.nlnetlabs.nl. TXT →

← test.zagreb.nlnetlabs.nl. TXT

zagreb.nlnetlabs.nl.

Round-trips: 5, queries: 12 Round-trips: 5, queries 5

16

