
Roto
A fast and safe scripting language for Rust
Oct 09 2025, EuroRust

Terts Diepraam (he/him), NLnet Labs

Terts Diepraam

Software Engineer at NLnet Labs

Organizer of RustWeek

NLnet Labs

Non-profit organization

Been around for 25 years

DNS and routing

E.g. NSD, Unbound, Routinator, etc.

NLnet Labs

Historically all in C

All new projects are in Rust

E.g. Cascade, Krill, Routinator, Rotonda and more

Rotonda

A BGP collector written in Rust

read: specialized database

Rotonda: simplified

Inputs Filters Store Filters Outputs

Solution: scripting language?

Too constrained

Too slow

Dynamically typed

So, being the completely sane developers that we are…

…we made our own

Enter: Roto

Roto in a nutshell

Embedded in Rust applications

Statically typed

Friendly error messages

JIT compiled to machine code

How? Cranelift!

Roto compiles to Cranelift IR

Cranelift does the rest!

The unsafest unsafe makes it fast

Cranelift gives us just a pointer and a buffer of code.

Transmute *const u8 to a function pointer

Super-duper unsafe!

Mitigation: Valgrind

Handwavy speed expectations

Perl

Python
Lua

Roto

Rust

Example: A simple script

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100;
 }
 x
}

Example: compiling a script

let rt = roto::Runtime::new();
let mut pkg = rt.compile("script.roto")?;
let f = pkg.get_function::<fn(i32) -> i32>("clamp")?;
let y = f.call(10);

Example: Error messages

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100.0;
 }
 x
}

→

Example: Error messages

Example: Error messages 2

fn clamp(x: i32) -> i32 {
 print(f"Got the value: {x}");
 if x > 100 {
 print("It's too big!");
 x = 100;
 }
 x
}

fn clamp() {}→

Example: Error messages

Example: Registration

use glam::Vec3; // just some random type
use roto::{Runtime, Val, library};

let lib = library! {
 #[copy] type Vec3 = Val<Vec3>;

 impl Val<Vec3> {
 fn x(self) -> f32 {
 self.x
 }
 }
};

let rt = Runtime::from_lib(lib)?;

Example: Registration

fn add_x_components(a: Vec3, b: Vec3) -> f32 {
 a.x() + b.x()
}

Example: Registration

let mut pkg = rt.compile("script.roto")?;
let f = pkg.get_function("add_x_components")?;

let a = Vec3::new(3.0, 0.0, 0.0);
let b = Vec3::new(5.0, 0.0, 0.0);
let out = f.call(Val(a), Val(b));
// out == 8.0 (roughly)

Registration restrictions

'static & Clone

Otherwise: Rc or Arc

No serialization necessary!

[INSERT DEMO HERE]

Documentation website & generator

Current limitations

• No lists
• No for loops (only while)
• No generics
• No stability guarantees yet

We take this thing seriously!

Backed by a non-profit organization

Integral part of a major product

Free and open source forever

Join us for RustWeek 2026!

May 18-23, 2026 – Utrecht, The Netherlands

See rustweek.org

https://2026.rustweek.org

Links

More about Roto
• github.com/NLnetLabs/roto
• roto.docs.nlnetlabs.nl

Find me online
• terts.dev
• terts@nlnetlabs.nl
• @mastodon.online@tertsdiepraam

Feel free to come up and talk to me!

Slides made with Typst.

Slides, recording & links:

https://terts.dev/talks/roto-eurorust25

https://github.com/NLnetLabs/roto
https://roto.docs.nlnetlabs.nl
https://terts.dev
mailto:terts@nlnetlabs.nl
https://mastodon.online@tertsdiepraam
https://terts.dev/talks/roto-eurorust25

