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Abstract—The Domain Name System (DNS) is the core tech-
nology of the Internet translating hostnames to Internet Protocol
(IP) addresses. DNS uses the connectionless User Datagram
Protocol (UDP) by default, which causes problems with Path
MTU Discovery. This is because DNS servers are stateless, and
do not remember queries they have already answered. The
Path MTU (PMTU) should be used as maximum size to stop
fragmentation from happening. Extension Mechanisms for DNS
(EDNS(0)) expands DNS with the UDP Message Size field, which
communicates the response size capability of the resolver. This
allows resolvers to specify the EDNS(0) they support.

In this research, we aim to provide data for a considered
optimal maximum EDNS(0) UDP message size, by measuring the
PMTU to which resolvers and stub resolvers on the Internet are
subject. We did this by creating an environment to serve different
sized DNS responses and querying this environment across the
Internet. This is done with the cooperation and supervision of
NLnet Labs and aligns with the goals DNS Flag Day 2020.
Our ambition is to suggest defaults for the maximum EDNS(0)
message size for DNS.

Based on our results, we recommend an EDNS(0) message
size of 1372 for IPv4 and 1332 for IPv6 stub resolvers in internal
networks. We recommend to use an EDNS(0) message size of 1232
for stub resolvers that communicate to resolvers using IPv6. IPv4
stub resolvers can still use an EDNS(0) message size of 1372. With
regards to resolvers, we recommend an EDNS(0) message size of
1232 for IPv4 and 1332 for IPv6.

Index Terms—DNS, MTU, Fragmentation, PMTU, EDNS(0)

I. INTRODUCTION

The Internet is constructed as an interconnected network
of networks where messages, which in this paper we refer
to as packets, are exchanged. Not every network supports
the same packet size, defined as the Maximum Transmission
Unit (MTU). To cope with this, Internet Protocol (IP) packets
can be divided into smaller pieces, called fragments. Thus,
fragmentation can occur if the number of bytes of an IP
packet exceed the MTU of a network. Fragmentation can cause
problems for the Domain Name System (DNS).

The problems fragmentation causes for DNS are numerous.
They vary from connectivity problems to security vulnerabil-
ities. This is described in further detail in Section III. The
biggest concern is connectivity. Since DNS is at the core of
the Internet, no connectivity means no connection for most end
users, unless they remember IP addresses. Therefore, network

operators try to reduce fragmentation occurrence for DNS
packets.

DNS Flag Day [1] is an initiative by several corporations
and organizations with the endeavor to improve the current
state of DNS employed worldwide. This is done by examining
interoperability and performance issues with the DNS brought
forth on industry mailing lists and conferences. To solve
these issues, standards and solutions are enforced during
the Flag Day by collaboratively modifying the way DNS
resolvers behave. The upcoming DNS Flag Day, planned to
be held in October 2020, aims to tackle the problems with IP
fragmentation of DNS packets.

This research aims to substantiate the choice for a rec-
ommended packet size and provide an optimal MTU value
for DNS packets, suggesting a default for network operators
to handle. This aligns with the goals of DNS Flag Day [1],
improving the functioning of the Internet.

A. Structure

The remainder of this paper is structured as follows: In
Section III, we provide some background information and
examine the highlights of previous work done by others that
relates to ours. In Section IV, we define our experiments and
environment along with the structure of gathering the results
and analysing them. We present the results of our experiments
in Section V. In Section VI, we discuss our findings. Using
our findings, we will draw conclusions and present those in
Section VII. The last Section VIII, contains suggestions for
future work.

II. RESEARCH QUESTION

For this research, we have formulated the following research
question:

What is the optimal EDNS message size to avoid
IP fragmentation?

Which results into the following sub-questions:
• Is there a difference between IPv4 and IPv6 regarding

MTU sizes?
• Which EDNS message size is best in terms of support for

DNS stub resolvers?
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• Which EDNS message size is best in terms of support for
DNS resolvers?

III. BACKGROUND

IP fragmentation introduces fragility to Internet communica-
tions. Fragmentation occurs if the number of bytes that a single
IP packet can convey in an Internet path is exceeded. This
limit is called the Path MTU (PMTU). The resulting fragility
is troublesome, because it is computationally expensive, holds
state, prone to errors, and susceptible to attacks [2].

Path MTU Discovery (PMTUD) discovers the PMTU be-
tween two nodes. This is used as an alternative to in transit
fragmentation. PMTUD does this conservatively. However,
this results into a PMTU that is usually less than the actual
PMTU [2]. Also, PMTUD relies on Internet Control Message
Protocol (ICMP) fragmentation needed (type 3, code 4) for
IPv4 and ICMPv6 Too Big (PTB) messages for IPv6. These
message can be unsupported or even blocked by nodes on
the path. Worse, the ICMP messages can be forged [3]. IPv6
also discourages the use of fragmentation, thus it can only be
applied by source nodes, and not by routers along a packet’s
delivery path [4].

PMTUD and the resulting fragmentation also causes prob-
lems with DNS servers, which are known to be stateless.
This is because if such an ICMP message is received, the
DNS server does not remember the original question anymore.
Therefore, it cannot resend the fragmentated answer.

The original DNS standard by Mockapetris et al. [5], speci-
fies the use of port 53 with both Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP) for transport. It
recommends UDP for standard queries and demands TCP for
zone transfers. Using UDP as initial protocol is due to the
lower overhead and better performance. The DNS packet also
has the TrunCation (TC) bit, which indicates that a response
has been truncated. This is due to it exceeding the length
permitted on the transmission channel. The length permitted
in original DNS UDP messages is 512 octets. If a response
has the TC bit set, the client will retransmit the DNS query
over TCP.

Extension Mechanisms for DNS (EDNS(0)) expands and
enhances DNS and is the default for modern DNS servers.
EDNS(0) adds information to DNS messages in the form of
a pseudo-Resource Record (RR) of the type OPT, due to lack
of space in the DNS message header [6]. One noteworthy
improvement is the increase of the maximum UDP packet
size from 512 octets to a larger size, with 4096 octets as
starting point suggestion. It this with a new field named the
UDP Message Size, which communicates the response size
capability of the resolver.

DNS works according to a client-server model, where
the domain name space is subdivided into a tree structure.
Authoritative name servers are leaves within the tree, and
provide the final answer to DNS queries. The client program
that queries name servers is called a resolver, Mockapetris et
al. [5]. Resolvers can be further divided into two subclasses,
namely stub resolvers and resolvers. In this paper, we refer to a

stub resolver as a computer program querying the authoritative
name server itself without an in-between party, whereas a
resolver is queried by a stub resolver to do the lookup for
them.

A. Related work

Weaver, Kreibich, Nechaev, et al. [7] showed with a dataset
gathered using Netalyzr that IP fragmentation causes problems
for DNS, especially with DNSSEC and other size-sensitive
DNS features. When using fragmented UDP datagrams, 8%
of the sessions could not send fragmented UDP and, more
importantly for DNS, 9% could not receive fragmented UDP
datagrams. Van Den Broek, Rijswijk-Deij, Sperotto, et al.
[8] expanded on this, showing that as much as 10.5% of
all resolvers suffer from fragmentation-related connectivity
issues. They based their observations on networks traces
recorded from an authoritative name server of SURFnet. They
also verified their results using traces from an authoritative
name server at the University of Pennsylvania.

Different techniques have been used to measure and an-
alyze the PMTU regarding DNS. The article by Toorop
[9] presents a technique to experiment with different
EDNS message sizes. Different sub-domains are used,
where each produces different responses. For exam-
ple, querying 1280.gorilla.nlnetlabs.nl TXT pro-
duces an answer of 1280 bytes. Accordingly, querying
1600.gorilla.nlnetlabs.nl TXT produces a frag-
ment of 1496 bytes and one of 160 bytes. This fragmentation
is due to the maximum MTU. This method requires custom
name servers, which decrease the reproducibility of resulting
research. Thus, we prefer to use default components. Further-
more, this exact method is not suited for our research, shown in
Section IV, since different queries are used for different sizes,
whereas we want to be able to receive different response sizes
based on the same query.

DNS-OARC [10] published a method that can be used to
determine the maximum reply size between a DNS server and
a resolver. They use a different method compared to Toorop
[9] to test different reply sizes. They do this with a custom
DNS server and chained CNAME responses. The custom DNS
server sends multiple replies, where each reply decreases in
size. This makes the resolver follow the CNAME of the largest
reply it receives. This way, a single query can be used to
test for different reply sizes. We came up with a DNAME
implementation based on this method, shown in Section IV.

Fujiwara and Vixie [11] wrote a draft on fragmentation
avoidance in DNS. In this draft, a suggestion is made on
a possible maximum DNS/UDP payload size. “To allow for
possible IP options and faraway tunnel overhead, a useful
default for maximum DNS/UDP payload size would be 1400.”
However, there is no scientific support for this suggestion.
In our research, we used this suggestion and tested it for
both IPv4 and IPv6. They also mention some reasons to stay
away from IP-fragmentation, e.g., “Fragmentation Considered
Poisonous” by Herzberg and Shulman [12], “IP fragmentation
attack on DNS” by Hlavacek [13], “Domain Validation++
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Fig. 1. Test Environment. Each arrow indicates a data stream between components. The solid arrows between Probes and VPS, and resolvers and VPS are
the queries that are being researched. The dotted arrows from probes to resolvers are out of our measuring influence.

For MitM-Resilient PKI” by Brandt, Dai, Klein, et al. [14],
and lastly “Security Implications of Predictable Fragment
Identification Values” by Gont [15]. Besides the attack vectors
they also mention that in RFC 8085 [16], it is specified that
an application SHOULD NOT send UDP datagrams which
result in IP-packets that exceed the MTU along the path to
the destination. Bonica [2] summarized that IP fragmentation
introduces fragility to Internet communication.

IV. METHODOLOGY

A. Test Environment

To determine the optimal EDNS message size, we con-
ducted theoretical research and practical experiments. The
theoretical research consists of consulting existing literature
regarding this subject, previous research, and results from
NLnet Labs. For the experiments, we used an online envi-
ronment with a Name Server Daemon (NSD), an open source,
authoritative name server developed by NLNet Labs [17].

Figure 1 illustrates our testing environment. It consists of
three main components. The first component is the RIPE
(Réseaux IP Européens) Atlas platform. RIPE Atlas is an
Internet data collection system based on a global network of
devices, called probes and anchors, that can actively measure
Internet connectivity [18]. The second component are paths
through the Internet, which includes third party DNS resolvers,
e.g., Cloudflare or Google or network resolvers. The last com-
ponent is a Virtual Private Server (VPS) or Virtual Machine
(VM) providing DNS, hosted by Digital Ocean.

This VPS also consists of multiple components, one of
them being NSD. The NSD instance is configured with two
zone files, one being only available through IPv4 and one

only available through IPv6. This is achieved by delegating
the respective zone file through an NS record that only an
address of corresponding protocol can reach. Each zone file
has DNAME records to allow for different sized responses.
We want to keep this as generic as possible, answering with
A and AAAA records. Since DNS was primarily developed
for looking up IP addresses, all resolvers should support these
address records. All DNS queries to NSD are logged with
dnstap. “Dnstap is a flexible, structured binary log format
for DNS software. It uses Protocol Buffers to encode events
that occur inside DNS software in an implementation-neutral
format [19].”

We use separate queries to distinguish between IPv4 and
IPv6 along with the distinction between stub resolvers and
resolvers. The reason behind the differentiation between the
stub and resolver is because assumed discrepancies, e.g., the
PMTU between stubs and resolvers. IPv4 and IPv6 are tested
through delegation. The distinction between a stub or resolver
is made using parameters of RIPE Atlas measurements. There-
fore, to account for all cases, we defined four unique queries to
measure the PMTU between the probes and the authoritative
DNS server. Each RIPE Atlas probe will send all four queries.
These queries are:

• $r-$t-$p-rslv.1500-plus0.pmtu4.rootcanary.net A
• $r-$t-$p-rslv.1500-plus0.pmtu6.rootcanary.net AAAA
• $r-$t-$p-stub.1500-plus0.pmtu4.rootcanary.net A
• $r-$t-$p-stub.1500-plus0.pmtu6.rootcanary.net AAAA

The variables $r-$t-$p, denoted by a $, are used to
add a random number, a timestamp, and the probe identifier
respectively to the query. This makes it possible to correlate
the results from RIPE Atlas with the data gathered by dnstap.

Multiple MTU sizes need to be tested, and therefore it
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is necessary that NSD answers to different sized queries
with responses that match in size. We facilitate this using
Delegation Name (DNAME) records. For each MTU that we
will analyze, we create a DNAME record with the MTU size
included in the name. For example, to test an MTU of 1500
bytes, 1500-plus0 needs to be queried or likewise, for an MTU
of 1280 bytes, 1280-plus0 will be queried. Thus, the padding
is facilitated by DNAME RDATA records that introduce extra
characters in the query. These extra characters are always the
letter “x”. The fact that this padding is possible with DNAMEs,
is because the RFC [20] does not allow DNAME RDATA to
be compressed.

However, the variable of $p, the probe ID, differs in length
between 1 and 7 characters. To combat this we created a
padding option in the query. This is where the plus0 in the
query is used for, where the addition is represented using
hexadecimals. So for example, a query with a probe ID length
of 7 characters needs to query 1500-plus0 to pad the answer
to 1500 bytes. For a probe ID length of 1 character, a query
with 1500-plusc should be used to pad the answer to 1500
bytes. This is due to the short probe ID occupying less space
in the query opposed to a large probe ID. So 1500-plusc pads
the query with 12 bytes to the same length as a query with a
probe ID length of 7 characters and a padding of 0 bytes. The
zones files with all the padding can be found in the appendices
A and B.

We received ongoing Atlas measurements from RIPE that
utilize all probes available at all times. With regular user
credentials it would be challenging to constantly spawn new
measurements based on previous results. These RIPE Atlas
queries are static and it is not possible to make different
queries based on MTU size. Thus, in collaboration with NLnet
Labs, we used extended Berkeley Packet Filter (eBPF) [21] to
rewrite the query of incoming packets to the MTU sizes we
want to measure. These are subsequently processed by NSD,
where afterwards the query inside the response packet is again
rewritten to the incoming query value.

We try to measure a different MTU every hour, beginning
with the Atlas measurement activating all online probes and
making them perform the constant queries. DNS queries arrive
with the question $r-$t-$p-stub.1500-plus0.pmtu4.rootcanary.net A at
the associated interface of the VM. eBPF will rewrite the
question section from 1500 to the MTU we want to measure at
that given moment, e.g., 1400. It will also rewrite the addends
of the plus part in the query depending on the length of the
probe ID. The rewritten packet will then continue to NSD,
which will respond with an answer of 1400 bytes in this
example. The answer will then return through eBPF, which
rewrites the question section back to the original 1500-plus0.
Thus, eBPF does not change the outgoing answer section.
However, to make sure IP fragmentation does not occur, eBPF
will add the Don’t Fragment (DF) flag to all outgoing IPv4
packets. The eBPF filter needs to be rebuild and reloaded
to test a different MTU size for IPv4 and IPv6. This setup
can potentially be extended to set an MTU per unique probe
identifier.

B. Tests

IPv4 and IPv6 have different header sizes and different
requirements regarding the MTU. Hence it is important to
make a distinction in MTU measurements based on them. It
is also important to test the resolver and stub independently,
since we assume that resolvers are most of the time located
in higher performing networks.

For UDP, fragmentation should be avoided for resiliency
and authenticity reasons. That entails that an EDNS message
size lower than most PMTUs needs to be chosen. However,
it should be noted that the lower the message size, the earlier
TCP is required to answer queries, impacting performance.
To reduce performance impact caused by fallback over TCP
(2 extra round trips) to a minimum, an EDNS message size
needs to be chosen which is as close to the highest supported
PMTU as possible.

Based on information of Fujiwara and Vixie [11], DNS
Flag Day [1], and Arends, Austein, Larson, et al. [22], we
determined which MTUs need to be tested. The maximum
MTU is 1500 bytes, as this is the default on most of the
Internet. The lowest is 1232 bytes for IPv4 and 1268 bytes
for IPv6, as suggested by Arends, Austein, Larson, et al.
[22]. These are MTU sizes, but we need to take into account
that the EDNS message size is the MTU minus the IP and
UDP headers. This varies depending on IPv4 and IPv6, where
for IPv4 we subtract 28 bytes, which aligns with the IPv4
header and UDP header. In case of IPv6, we subtract 48
bytes, which is the size of the IPv6 header in addition with
the UDP header. For both cases, we assume that no option
fields will be enabled. If the EDNS message size of a query
is smaller than the EDNS message size we want to test at that
moment, then we will discard that result. This is due to the
resolver not supporting the EDNS message size we want to
measure. Also, all TCP queries will be discarded as we only
look at failed UDP queries. We mark a query as failed, if the
query contains a EDNS message size higher or equal than the
measured EDNS message size or if the probe did not receive
an answer.

We added extra MTU sizes to cover more within this
research and get an more elaborate overview. These extra MTU
sizes are based on the size of optional (extension) headers and
possible encapsulation in tunnels. However, not all probes are
online for the entire day. To get as much results from all probes
as possible, we measured all chosen MTUs two times per day
with an interval of 12 hours. This results in 12 measurements
from 00:00 to 11:59 and from 12:00 to 23:59.

C. Gathering Results

We need to gather and correlate the data of the sending side,
i.e., the Atlas probe doing the query, and the receiving side,
i.e., the NSD DNS server. We use the dnstap command-line
tool to create a reliable byte-stream socket which NSD uses to
send serialized event messages. These messages, with stateful
DNS information, are then deserialized into JavaScript Object
Notation (JSON). We then use the piped logging program
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rotatelogs from Apache to save the JSON formatted DNS
logs for every hour.

To acquire the sending data, we utilized RIPE Atlas
Cousteau, a Python wrapper around the RIPE Atlas API [23].
We fetch the data from public measurements of which the
corresponding identifiers are shown in Table I. We further
extended this with other Python scripts which collectively load
the JSON formatted NSD logs and the Atlas data.

TABLE I
PUBLIC RIPE ATLAS MEASUREMENT IDENTIFIERS

Stub Resolver
IPv4 25741785 25741787
IPv6 25741786 25741788

For stub resolver around 10.000 queries were performed.
This aligns with what we expect, since there are around 10.000
probes and each probe queries the authoritative nameserver
only once. For the probe resolvers, around 20.000 queries were
performed. This is because most probes have two or more
resolvers configured and all resolvers will be used to send
queries.

To perform data analysis and manipulation, we used pandas
[24]. We store all data as DataFrame objects for fast and
efficient data manipulation. The data is correlated depending
on the type of resolver and done for both IPv4 and IPv6
separately.

For the stub resolvers, first the probe IDs from the failed
stub Atlas queries are retrieved and the total number of queries
are stored. Then we use the IDs to filter the dnstap logs and
thus only load the logs from failed probes. Next, we drop
duplicates since we only care about unique queries. This yields
the total number of queries, the number of failed queries, and
allows us to calculate the percentage of failed queries.

For DNS resolvers, the process needs to be done differently.
First the dnstap logs are loaded and split on their transport
protocol. We remove all results where the padding x’s occur
in the query. This is due to caching where the resolver
already tries to resolve the query. The occurrence of these
padding x’s means we do not have 100% cache-hit free results.
Next, we merge the separate DataFrames on their unique
variable section, i.e., $r-$t-$p. This correlates the initial
UDP EDNS message size with the subsequent TCP queries.

Then, we fetch the total number of queries from RIPE Atlas
and use this together with the failed results to calculate the
percentage of failed resolver queries.

Finally, all the hourly results are printed in JSON format.
This result includes separate MTU values for IPv4 and IPv6,
since we make a distinction as mentioned in the previous
Subsection IV-B

D. Analysing Results
The processed data is plotted using Seaborn, a Python data

visualization library based on matplotlib. We take the mean of
all the MTU values and include the standard deviation.

We also saw discrepancies in the results which led us to
further analyze our results by looking at the ASN of IP

addresses of failing queries, seen in Section V. This was done
with the aid of the pyasn library [25].

All our code is publicly available under the BSD license at
Github [26].

V. RESULTS

We look at which EDNS message size is best in terms
of support for DNS stub resolvers and DNS resolvers. As
we have four different categories of queries, each will be
presented on its own. First, we will look into the results of the
DNS stub resolvers. Secondly, we will look into the results of
the DNS resolvers. Secondly, the results are displayed with
an MTU size on the x-axis, not the corresponding EDNS
message size. The graphs are plotted from data collected in
2 consecutive days.

A. Stub resolvers

For the IPv4 stub resolver, the results are presented in
Figure 2. It stands out that the MTU size 1500 has a higher
mean failed percentage than the other MTUs. The MTU of
1500 results in a mean of 18.92 percentage of failed queries.
An MTU of 1492 drops 12.54 percentage point to a mean
percentage of 6.38. Going down to an MTU of 1480 it drops
1.49 percentage point. Then going to a MTU of 1460 it drops
1.97 percentage point, to a mean percentage of 2.92. The
remainder of the MTUs keep going down in failed percentage
up to the MTU of 1400. After this the results of the remaining
MTUs are around 0.9 percent of failed queries. So for the
two highest tested MTU 1500, we observe a significant higher
failure rate, whereas the other tested MTUs differ around 5.5
percent point of failed queries.

1500 1492 1480 1460 1448 1440 1428 1416 1400 1260 1248 1232
MTU size
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Fig. 2. Percentage of failed DNS UDP queries per MTU size for IPv4 stub
resolvers

The results of the IPv6 stub resolver experiments are
presented in Figure 3. An MTU of 1500 has a mean of 26.16
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Fig. 3. Percentage of failed DNS UDP queries per MTU size for IPv6 stub
resolvers

percent of failed queries. Going to an MTU of 1492 the failed
queries dropped to a mean of 14.19 percent. An MTU of
1460 compared to 1500 dropped 19.78 percentage point, to
a mean of 6.38 percent failed queries. 1380 up to including
1300 all are comparable equal in the mean percentage of
failed queries. The next noticeable difference is going down
to an MTU of 1280.

B. Resolvers

There are three groups of MTUs that stand out. The first
group is the MTUs 1500 and 1492. Those have a mean
percentage of failed queries around 3 percent, which is con-
siderably more than most of the remaining MTUs. The second
group is the MTUs 1480 up to and including 1400. Those have
a mean percentage of failed queries around 1.65 percent. The
last group is the MTUs 1260, 1248, and 1232. These only
have a mean percentage failed queries of around 0.9 percent.

For IPv6 resolvers we do not see these three groups. We do
see the MTUs 1500 and 1492 having a higher mean percentage
than the remaining MTUs. Those have a mean percentage of
failed queries around 1.35 percent. The remaining MTUs are
decreasing in a linearly like fashion. So starting at the MTU
1460 with a mean percentage of 0.81, going down to MTU
1268 with a mean percentage of 0.43.

VI. DISCUSSION

The background information including the related work
helped us determine how the optimal EDNS message size
needs to be determined. It showed that a lower EDNS message
size does not equal a better performance. Also, a higher
message size does not imply improvement. So an ENDS
message size needs to be chosen which is as close to the
highest supported path MTU as possible.
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Fig. 4. Percentage of failed DNS UDP queries per MTU size for IPv4
resolvers
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Fig. 5. Percentage of failed DNS UDP queries per MTU size for IPv6
resolvers

In our method we described four different queries. Two
queries are for the stub resolvers and two are for the resolvers.
As the specifications of IPv4 and IPv6 allow for different
minimum MTUs, we made an individual query for both IPv4
and IPv6 for stub resolvers and resolvers. The results show
that there is a significant difference between IPv4 and IPv6
and between the stub resolvers and resolvers. This makes that
we will provide suggestions for those four different situations.

What is visible in the graphs is that the path MTUs of
1500 and 1492 have a noticeable higher percentage of failed
queries. This is possibly due to tunneling and encapsulation,
e.g., VLANs, GRE tunnels, and VPNs.

The standard deviations show that there is little variation
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in the measured results. Even though the difference between
the mean of each MTU is small for the stub and resolvers, it
still is significant. The population of stub and resolvers that is
within this 0.01% is considerable. For the stub resolver results,
0.01% is around 100 queries and for the resolvers, it is around
200 queries.

For the IPv4 stub resolver test, we initially set the UDP
checksum to 0. This should be supported by the RIPE Atlas
probes [4]. However, the results we found with this imple-
mentation showed at least 13 percent failures for all MTUs.
This indicates that the probes do not handle this checksum
configuration well. After changing the configuration from
setting the checksum to zero to calculating each checksum
individually, the results were not failing as often, indicating a
more accurate measurement.

The results of the stub resolvers present that, for IPv4,
an MTU of 1400 does not differ much from the remaining
MTUs, taking the standard deviation into account. So an
EDNS message size of 1372 could be a valid option for
stub resolvers on IPv4. The fact that the middle group of
MTUs in the IPv6 stub resolver results are around the same
percentage of failed queries, could be because of failed path
MTU discoveries. In case of a real world scenario, these would
fallback to 1280 as MTU. In our experiment we tested the path
of a stub resolver over the internet to our own authoritative
DNS. However, in most scenarios the stub resolver would talk
to a resolver within its own network. This makes it difficult
to suggest one EDNS message size for this case. To take
tunneling and encapsulation into account we suggest to use a
MTU of 1380 –EDNS message size of 1332– for internal stub
resolvers as this is the highest MTU that has around the same
mean percentage of failed queries as the other MTUs. Because
of the failing path MTU discoveries, we suggest a MTU of
1280 –EDNS message size of 1232– for stub resolvers that
communicate to a resolver. This as it is a trade-off between a
higher MTU and a lower mean percentage of failed queries.

Based on the results of the resolvers for IPv4, we suggest
that an MTU of 1260 –EDNS message size of 1232– could be
chosen. Based on the results for the IPv6 resolvers, we would
advice to choose an MTU of 1380 –EDNS message size of
1332–. The fact that for IPv4 there is a middle group of MTUs
that are around the same percentage of failed queries, made
us dive deeper in the results. We observed there is no single
AS that is the cause of the higher percentage failing queries.

As the MTU of 1500 is the highest tested MTU, it is
important that the Digital Ocean environment supported MTUs
of this size. This was not known in advance, but the experiment
showed that there are positive results on a MTU of 1500. This
means that our experiment environment supported our maxi-
mum MTU, so this was not a bottleneck in our experiments.

A DNS query comes in through a specific path. This path
however, can differ for the answer. So because the path
selection is dynamic, we cannot conclude anything on the
MTU of the incoming packets. Only for the packets we send
out. However, to determine the failed resolver queries, we had
to look at the incoming packets. In the case that a resolver

sends an UDP query that does not arrives at NSD, we are
unable to measure that this took place. After a failed attempt,
the resolver could come(back) over TCP. In that case we are
only able to measure DNS resolvers that had failed UDP
queries, when a TCP question arrived.

In our results, we can see that even on the lowest MTU
tested there are probes that fail. This could be because the
network in between does not support that MTU. However,
it could also be the case that there are probes that are
always failing. This does have an impact on the height of the
percentage of failed queries, but this would not be a big issue,
as this would be the case for all tested MTUs. So overall
the percentage of failed queries could be lower. We do not
suspect that the amount of consistent failing probes is of a big
significance.

Lastly, our research tries to depict an accurate representation
of the Internet. RIPE atlas probes are mostly located in Europe
and the USA. This means that there is a bias in results which
can result in a distorted picture of the actual situation. The
cause of the distribution of probes could be because RIPE
Atlas is presumed to have a tech-bias too. This means that
the probes are most likely to be handed out to the tech-savvy
crowd that attends RIPE and similar conferences.

VII. CONCLUSION

In this research, we analyzed a sample of the Internet to
determine the optimal maximum UDP response size for DNS.
We constructed a reproducible environment with standard
components except for the RIPE Atlas probes as population.
Based on our results, we recommend an EDNS(0) message
size of 1372 for IPv4 and 1332 for IPv6 stub resolvers in
internal networks. For stub resolvers that communicate to
resolvers, we recommend to use 1232 as EDNS(0) message
size for IPv6, IPv4 can still use the 1372. For resolvers, we
recommend an EDNS(0) message size of 1232 for IPv4. IPv4
resolvers did have a centered group that had around the same
percentage of failed queries. We suspected this to be specific
ASs failing, but after analysing the results, no AS could be
singled out as the cause of the higher percentage of failed
queries. Finally, we suggest an EDNS(0) message size of 1332
for IPv6 resolvers.

VIII. FUTURE WORK

A. MTUs

In future research more than 12 MTUs could be chosen
to analyze. It is possible to research all MTUs available
in a specific range. To go even further, looking at specific
MTUs for individual probes could give a deeper insight in the
supported MTUs on specific networks. This could also help
with getting rid of the time bias in the measurements.

Further follow-up research would be analyzing the MTU
sizes per AS. This could provide information on supported
MTU sizes by different ASs instead of different probes, which
could help in looking at ASs that are not supporting the general
supported MTU(s). However, it could be the case that there
are ASs that have a higher degree of probes in their network.
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This could result in drawing the wrong conclusions. So future
research could be analyzing the distribution of measurement
probes across ASs.

B. Failing Probes

As mentioned in the discussion, there are a number of
probes that could always be failing. To get a more accurate
result from RIPE Atlas measurements, research could be done
to determine which probes are always failing. These probes
could then be researched with a higher degree of depth. That
way, a better conclusion could be made to say whether the
MTU size is the problem or that there is something wrong
with the probe. It should be noted that this research should
only focus on the experiments we conducted, as the probes
support multiple measurement types, e.g., HTTPS, ICMP. So
if a probe fails for DNS, it does not mean the probe is broken,
but it could be that only the DNS functionality is not working
properly or that the probe resides behind a firewall that is
filtering out its DNS traffic.

C. Continuation

The Internet is constantly changing and it is important to
adapt to these changes. This is also what we try to achieve,
as we do not only do suggestions on choosing the optimal
EDNS message sizes, but we also illustrated a reproducible
environment that is in the public domain. The suggestions we
do now are likely to change in the future. Therefore, it is
important to actively pursue the continuation of this research,
adjusting the EDNS message sizes when due. This keeps DNS
performing as optimal as possible.
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APPENDIX

Note that for the zone Listings, the consecutive sequences have been simplified with three dots to reduce size.

A. Zone file IPv4

Listing 1. IPv4 DNS Zone File
$ORIGIN pmtu4.rootcanary.net.
$TTL 1

@ 25200 SOA ns.pmtu4.rootcanary.net. sysadm.rootcanary.org. (
2020062400 ; serial
10800 ; refresh (3 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
300 ; minimum (5 minutes)
)

25200 NS ns
ns 25200 A 64.227.79.193

; MSG SIZE: 1472
1500-plus0 DNAME xxx.1500.pmtu4.rootcanary.net.
1500-plus2 DNAME xxxx.1500.pmtu4.rootcanary.net.
...
1500-plusa DNAME xxxxxxxx.1500.pmtu4.rootcanary.net.
1500-plusc DNAME xxxxxxxxx.1500.pmtu4.rootcanary.net.

; MSG SIZE: 1464
1492-plus0 DNAME xxxxxxx.1492.pmtu4.rootcanary.net.
1492-plus2 DNAME xxxxxxxx.1492.pmtu4.rootcanary.net.
...
1492-plusa DNAME xxxxxxxxxxxx.1492.pmtu4.rootcanary.net.
1492-plusc DNAME xxxxxxxxxxxxx.1492.pmtu4.rootcanary.net.

; MSG SIZE: 1452
1480-plus0 DNAME x.1480.pmtu4.rootcanary.net.
1480-plus2 DNAME xx.1480.pmtu4.rootcanary.net.
...
1480-plusa DNAME xxxxxx.1480.pmtu4.rootcanary.net.
1480-plusc DNAME xxxxxxx.1480.pmtu4.rootcanary.net.

1460-plus0 DNAME xxxxxxx.1460.pmtu4.rootcanary.net.
1460-plus2 DNAME xxxxxxxx.1460.pmtu4.rootcanary.net.
...
1460-plusa DNAME xxxxxxxxxxxx.1460.pmtu4.rootcanary.net.
1460-plusc DNAME xxxxxxxxxxxxx.1460.pmtu4.rootcanary.net.

1448-plus0 DNAME x.1448.pmtu4.rootcanary.net.
1448-plus2 DNAME xx.1448.pmtu4.rootcanary.net.
...
1448-plusa DNAME xxxxxx.1448.pmtu4.rootcanary.net.
1448-plusc DNAME xxxxxxx.1448.pmtu4.rootcanary.net.

1440-plus0 DNAME xxxxx.1440.pmtu4.rootcanary.net.
1440-plus2 DNAME xxxxxx.1440.pmtu4.rootcanary.net.
...
1440-plusa DNAME xxxxxxxxxx.1440.pmtu4.rootcanary.net.
1440-plusc DNAME xxxxxxxxxxx.1440.pmtu4.rootcanary.net.
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; MSG SIZE: 1404
1428-plus0 DNAME xxxxxxx.1428.pmtu4.rootcanary.net.
1428-plus2 DNAME xxxxxxxx.1428.pmtu4.rootcanary.net.
...
1428-plusa DNAME xxxxxxxxxxxx.1428.pmtu4.rootcanary.net.
1428-plusc DNAME xxxxxxxxxxxxx.1428.pmtu4.rootcanary.net.

1416-plus0 DNAME x.1416.pmtu4.rootcanary.net.
1416-plus2 DNAME xx.1416.pmtu4.rootcanary.net.
...
1416-plusa DNAME xxxxxx.1416.pmtu4.rootcanary.net.
1416-plusc DNAME xxxxxxx.1416.pmtu4.rootcanary.net.

; MSG SIZE: 1372
1400-plus0 DNAME x.1400.pmtu4.rootcanary.net.
1400-plus2 DNAME xx.1400.pmtu4.rootcanary.net.
...
1400-plusa DNAME xxxxxx.1400.pmtu4.rootcanary.net.
1400-plusc DNAME xxxxxxx.1400.pmtu4.rootcanary.net.

; MSG SIZE: 1252
1280-plus0 DNAME xxxxx.1280.pmtu4.rootcanary.net.
1280-plus2 DNAME xxxxxx.1280.pmtu4.rootcanary.net.
...
1280-plusa DNAME xxxxxxxxxx.1280.pmtu4.rootcanary.net.
1280-plusc DNAME xxxxxxxxxxx.1280.pmtu4.rootcanary.net.

1260-plus0 DNAME xxx.1260.pmtu4.rootcanary.net.
1260-plus2 DNAME xxxx.1260.pmtu4.rootcanary.net.
...
1260-plusa DNAME xxxxxxxx.1260.pmtu4.rootcanary.net.
1260-plusc DNAME xxxxxxxxx.1260.pmtu4.rootcanary.net.

1248-plus0 DNAME xxxxx.1248.pmtu4.rootcanary.net.
1248-plus2 DNAME xxxxxx.1248.pmtu4.rootcanary.net.
...
1248-plusa DNAME xxxxxxxxxx.1248.pmtu4.rootcanary.net.
1248-plusc DNAME xxxxxxxxxxx.1248.pmtu4.rootcanary.net.

; MSG SIZE: 1204
1232-plus0 DNAME xxxxx.1232.pmtu4.rootcanary.net.
1232-plus2 DNAME xxxxxx.1232.pmtu4.rootcanary.net.
...
1232-plusa DNAME xxxxxxxxxx.1232.pmtu4.rootcanary.net.
1232-plusc DNAME xxxxxxxxxxx.1232.pmtu4.rootcanary.net.

; MSG SIZE: 1192
1220-plus0 DNAME xxxxxxx.1220.pmtu4.rootcanary.net.
1220-plus2 DNAME xxxxxxxx.1220.pmtu4.rootcanary.net.
...
1220-plusa DNAME xxxxxxxxxxxx.1220.pmtu4.rootcanary.net.
1220-plusc DNAME xxxxxxxxxxxxx.1220.pmtu4.rootcanary.net.

;
; Wildcards hack
;

*.1500 A 10.0.150.0
A 10.1.150.0
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...
A 10.77.150.0
A 10.78.150.0

*.1492 A 10.0.149.2
A 10.1.149.2
...
A 10.76.149.2
A 10.77.149.2

*.1480 A 10.0.148.0
A 10.1.148.0
...
A 10.76.148.0
A 10.77.148.0

*.1460 A 10.0.146.0
A 10.1.146.0
...
A 10.74.146.0
A 10.75.146.0

*.1448 A 10.0.144.8
A 10.1.144.8
...
A 10.74.144.8
A 10.75.144.8

*.1440 A 10.0.144.0
A 10.1.144.0
...
A 10.73.144.0
A 10.74.144.0

*.1428 A 10.0.142.8
A 10.1.142.8
...
A 10.72.142.8
A 10.73.142.8

*.1416 A 10.0.141.6
A 10.1.141.6
...
A 10.72.141.6
A 10.73.141.6

*.1400 A 10.0.140.0
A 10.1.140.0
...
A 10.71.140.0
A 10.72.140.0

*.1280 A 10.0.128.0
A 10.1.128.0
...
A 10.63.128.0
A 10.64.128.0

*.1260 A 10.0.126.0
A 10.1.126.0
...
A 10.62.126.0
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A 10.63.126.0

*.1248 A 10.0.124.8
A 10.1.124.8
...
A 10.61.124.8
A 10.62.124.8

*.1232 A 10.0.123.2
A 10.1.123.2
...
A 10.60.123.2
A 10.61.123.2

*.1220 A 10.0.122.0
A 10.1.122.0
...
A 10.59.122.0
A 10.60.122.0
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B. Zone file IPv6

Listing 2. IPv6 DNS Zone File
$ORIGIN pmtu6.rootcanary.net.
$TTL 1

@ 25200 SOA ns.pmtu6.rootcanary.net. sysadm.rootcanary.org. (
2020062400 ; serial
10800 ; refresh (3 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
300 ; minimum (5 minutes)
)

25200 NS ns
ns 25200 AAAA 2a03:b0c0:2:f0::1b5:5001

;
; DNAME hack to respond with different sizes depending on l = len(probe_id)
;

1500-plus0 DNAME xxxxxxxxx.1500.pmtu6.rootcanary.net.
1500-plus2 DNAME xxxxxxxxxx.1500.pmtu6.rootcanary.net.
...
1500-plusa DNAME xxxxxxxxxxxxxx.1500.pmtu6.rootcanary.net.
1500-plusc DNAME xxxxxxxxxxxxxxx.1500.pmtu6.rootcanary.net.

1492-plus0 DNAME xxxxx.1492.pmtu6.rootcanary.net.
1492-plus2 DNAME xxxxxx.1492.pmtu6.rootcanary.net.
...
1492-plusa DNAME xxxxxxxxxx.1492.pmtu6.rootcanary.net.
1492-plusc DNAME xxxxxxxxxxx.1492.pmtu6.rootcanary.net.

1460-plus0 DNAME xxx.1460.pmtu6.rootcanary.net.
1460-plus2 DNAME xxxx.1460.pmtu6.rootcanary.net.
...
1460-plusa DNAME xxxxxxxx.1460.pmtu6.rootcanary.net.
1460-plusc DNAME xxxxxxxxx.1460.pmtu6.rootcanary.net.

1448-plus0 DNAME xxxxxxxxxxx.1448.pmtu6.rootcanary.net.
1448-plus2 DNAME xxxxxxxxxxxx.1448.pmtu6.rootcanary.net.
...
1448-plusa DNAME xxxxxxxxxxxxxxxx.1448.pmtu6.rootcanary.net.
1448-plusc DNAME xxxxxxxxxxxxxxxxx.1448.pmtu6.rootcanary.net.

1412-plus0 DNAME xxxxxxx.1412.pmtu6.rootcanary.net.
1412-plus2 DNAME xxxxxxxx.1412.pmtu6.rootcanary.net.
...
1412-plusa DNAME xxxxxxxxxxxx.1412.pmtu6.rootcanary.net.
1412-plusc DNAME xxxxxxxxxxxxx.1412.pmtu6.rootcanary.net.

1400-plus0 DNAME x.1400.pmtu6.rootcanary.net.
1400-plus2 DNAME xx.1400.pmtu6.rootcanary.net.
...
1400-plusa DNAME xxxxxx.1400.pmtu6.rootcanary.net.
1400-plusc DNAME xxxxxxx.1400.pmtu6.rootcanary.net.

1380-plus0 DNAME xxxxx.1380.pmtu6.rootcanary.net.
1380-plus2 DNAME xxxxxx.1380.pmtu6.rootcanary.net.
...
1380-plusa DNAME xxxxxxxxxx.1380.pmtu6.rootcanary.net.
1380-plusc DNAME xxxxxxxxxxx.1380.pmtu6.rootcanary.net.

1360-plus0 DNAME xxxxxxxxx.1360.pmtu6.rootcanary.net.
1360-plus2 DNAME xxxxxxxxxx.1360.pmtu6.rootcanary.net.
...
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1360-plusa DNAME xxxxxxxxxxxxxx.1360.pmtu6.rootcanary.net.
1360-plusc DNAME xxxxxxxxxxxxxxx.1360.pmtu6.rootcanary.net.

1340-plus0 DNAME xxxxxxxxxxxxx.1340.pmtu6.rootcanary.net.
1340-plus2 DNAME xxxxxxxxxxxxxx.1340.pmtu6.rootcanary.net.
...
1340-plusa DNAME xxxxxxxxxxxxxxxxxx.1340.pmtu6.rootcanary.net.
1340-plusc DNAME xxxxxxxxxxxxxxxxxxx.1340.pmtu6.rootcanary.net.

1320-plus0 DNAME xxx.1320.pmtu6.rootcanary.net.
1320-plus2 DNAME xxxx.1320.pmtu6.rootcanary.net.
...
1320-plusa DNAME xxxxxxxx.1320.pmtu6.rootcanary.net.
1320-plusc DNAME xxxxxxxxx.1320.pmtu6.rootcanary.net.

1300-plus0 DNAME xxxxxxx.1300.pmtu6.rootcanary.net.
1300-plus2 DNAME xxxxxxxx.1300.pmtu6.rootcanary.net.
...
1300-plusa DNAME xxxxxxxxxxxx.1300.pmtu6.rootcanary.net.
1300-plusc DNAME xxxxxxxxxxxxx.1300.pmtu6.rootcanary.net.

1280-plus0 DNAME xxxxxxxxxxx.1280.pmtu6.rootcanary.net.
1280-plus2 DNAME xxxxxxxxxxxx.1280.pmtu6.rootcanary.net.
...
1280-plusa DNAME xxxxxxxxxxxxxxxx.1280.pmtu6.rootcanary.net.
1280-plusc DNAME xxxxxxxxxxxxxxxxx.1280.pmtu6.rootcanary.net.

1268-plus0 DNAME xxxxx.1268.pmtu6.rootcanary.net.
1268-plus2 DNAME xxxxxx.1268.pmtu6.rootcanary.net.
...
1268-plusa DNAME xxxxxxxxxx.1268.pmtu6.rootcanary.net.
1268-plusc DNAME xxxxxxxxxxx.1268.pmtu6.rootcanary.net.

1232-plus0 DNAME x.1232.pmtu6.rootcanary.net.
1232-plus2 DNAME xx.1232.pmtu6.rootcanary.net.
...
1232-plusa DNAME xxxxxx.1232.pmtu6.rootcanary.net.
1232-plusc DNAME xxxxxxx.1232.pmtu6.rootcanary.net.

1220-plus0 DNAME xxxxxxxxx.1220.pmtu6.rootcanary.net.
1220-plus2 DNAME xxxxxxxxxx.1220.pmtu6.rootcanary.net.
...
1220-plusa DNAME xxxxxxxxxxxxxx.1220.pmtu6.rootcanary.net.
1220-plusc DNAME xxxxxxxxxxxxxxx.1220.pmtu6.rootcanary.net.

;
; Wildcards hack
;

*.1500 AAAA 2001:db8::1:1500
AAAA 2001:db8::2:1500
...
AAAA 2001:db8::43:1500
AAAA 2001:db8::44:1500

*.1492 AAAA 2001:db8::1:1492
AAAA 2001:db8::2:1492
...
AAAA 2001:db8::43:1492
AAAA 2001:db8::44:1492

*.1460 AAAA 2001:db8::1:1460
AAAA 2001:db8::2:1460
...
AAAA 2001:db8::42:1460
AAAA 2001:db8::43:1460
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*.1448 AAAA 2001:db8::1:1448
AAAA 2001:db8::2:1448
...
AAAA 2001:db8::41:1448
AAAA 2001:db8::42:1448

*.1412 AAAA 2001:db8::1:1412
AAAA 2001:db8::2:1412
...
AAAA 2001:db8::40:1412
AAAA 2001:db8::41:1412

*.1400 AAAA 2001:db8::1:1400
AAAA 2001:db8::2:1400
...
AAAA 2001:db8::40:1400
AAAA 2001:db8::41:1400

*.1380 AAAA 2001:db8::1:1380
AAAA 2001:db8::2:1380
...
AAAA 2001:db8::39:1380
AAAA 2001:db8::40:1380

*.1360 AAAA 2001:db8::1:1360
AAAA 2001:db8::2:1360
...
AAAA 2001:db8::38:1360
AAAA 2001:db8::39:1360

*.1340 AAAA 2001:db8::1:1340
AAAA 2001:db8::2:1340
...
AAAA 2001:db8::37:1340
AAAA 2001:db8::38:1340

*.1320 AAAA 2001:db8::1:1320
AAAA 2001:db8::2:1320
...
AAAA 2001:db8::37:1320
AAAA 2001:db8::38:1320

*.1300 AAAA 2001:db8::1:1300
AAAA 2001:db8::2:1300
...
AAAA 2001:db8::36:1300
AAAA 2001:db8::37:1300

*.1280 AAAA 2001:db8::1:1280
AAAA 2001:db8::2:1280
...
AAAA 2001:db8::35:1280
AAAA 2001:db8::36:1280

*.1268 AAAA 2001:db8::1:1268
AAAA 2001:db8::2:1268
...
AAAA 2001:db8::35:1268
AAAA 2001:db8::36:1268

*.1232 AAAA 2001:db8::1:1232
AAAA 2001:db8::2:1232
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...
AAAA 2001:db8::34:1232
AAAA 2001:db8::35:1232

*.1220 AAAA 2001:db8::1:1220
AAAA 2001:db8::2:1220
...
AAAA 2001:db8::33:1220
AAAA 2001:db8::34:1220
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