
System & Network Engineering

Resilient OpenDNSSEC
research project 2

Student

Aleksandar Kasabov
aleksandar.kasabov@os3.nl

Supervisor

Yuri Schaeffer (NLnetLabs)
yuri.schaeffer@nlnetlabs.nl

August 20, 2012
Final version

Abstract

The operational burden of maintaining encryption keys and signed zone
files is the main hindrance to deploying (Domain Name System Security
Extensions) DNSSEC. Companies try to tackle this problem by forcing their
administrators to follow operational guide books in every step of the daily
DNS activities. However, errors are prone to happen in every process where
the human factor is involved.

OpenDNSSEC is a turn-key solution for securing DNS zones with DNSSEC.
It offers high performance and automatic key management. This project
looks at error situations in securing DNS zones with OpenDNSSEC and how
those can be avoided. The paper also makes recommendations for increasing
the resilience level which OpenDNSSEC can offer against such situations.

1

Acknowledgements

I would like to thank my supervisor Yuri Schaeffer for his valuable input
during the conduction of this project and the subsequent period of writing
this report. His help on plotting the graphs in chapter Optimum TTL
settings and especially the mathematical functions behind them has been
tremendous and I could not thank him enough.

I would also like to show my gratitude to the NLnetLabs team. They are
all bright professionals who create very pleasant working environment and
share good ideas which have also found place in this report.

2

Contents

1 Introduction 6

1.1 DNSSEC . 7

1.2 Research questions . 9

2 OpenDNSSEC 11

3 Test cases 15

3.1 Key rollovers . 15

3.2 Environment changes . 18

3.2.1 Zone signing configuration file 19

3.2.2 Database . 20

3.2.3 Signed zone files . 25

3.2.4 System date . 27

3.3 Components crash . 29

3.3.1 Enforcer crash . 30

3.3.2 Singer crash . 31

3.3.3 HSM crash . 32

4 Optimum TTL settings 37

4.1 Risk - definition and factors 38

3

CONTENTS

4.2 Assumptions . 39

4.3 Example case . 39

4.4 Results . 42

5 Conclusion and recommendations 50

5.1 Resilience against ODS environment changes 50

5.2 Resilience against crashing components 51

5.3 Optimum TTL settings . 52

5.4 Framework for visualizing ODS key states 53

6 Future work 54

6.1 Improvements for the ODS key states visualizing framework . 54

6.2 ODS architecture consideration 55

6.3 Proof for the optimum TTL settings 55

6.4 Risk analysis . 56

7 Appendix 59

7.1 writekeystates.sh . 59

7.2 plotkeystates.py . 59

7.3 ttl-risk.py . 66

7.4 heatmap.gpi . 67

4

List of Figures

1.1 Resolving DNS data with DNSSEC[1] 8

2.1 OpenDNSSEC architectural design 12

3.1 OpenDNSSEC key states[2] 16

3.2 Timeline plot of key states during a ZSK rollover with
OpenDNSSEC version 1.4 . 18

3.3 Displaying the resign interval setting for the ”lab” policy in
the ODS database using the sqlitebrowser GUI application . . 22

3.4 The resign interval has been modified to 7200 seconds for the
”lab” policy in the ODS database using the sqlitebrowser GUI
application . 23

4.1 Probability of a DNSSEC-resolver seeing a zone as valid at a
given time x when TTL1=4, TTL2=6 40

4.2 Possibility of DNSSEC validators seeing a valid zone when
TTL values from 1 to 10 are used 45

4.3 Normalized value of the risk that DNSSEC-validators might
see a bogus zone when TTL values from 1 to 10 are used . . . 46

4.4 Risk of DNSSEC validators seeing a bogus zone when TTL
values from 1 to 10 are used 48

5

Chapter 1

Introduction

The need for a secure domain name service has been identified by many
enterprises[3]. DNSSEC is one of the solutions for secure DNS. It offers
authentication and integrity of DNS data and authenticated denial of ex-
istence. Its deployment, however, has been proven far from trivial, mainly
due to the operational burden related to the management (and rollover) of
encryption keys.

Examples include NASA failing to roll over to a new key signing key (KSK)
in the beginning of this year. NASA administrators published a new key
in the DNSKEY record set but missed to sign it with both the old and
the new keys. Thus, resolvers which had cached the old key could not
validate the DNSKEY set which resulted in a bogus zone. As a result, all
internet service providers in the world who use DNSSEC to authenticate
DNS responses, seized access to the zone for all their users. Comcast was
one of these providers. Nevertheless, Comcast published an official report[4]
explaining that the problem was entirely NASA’s fault.

That is why, enterprises strive to automate their DNSSEC operational
activities. Otherwise the latter will have to be manually and periodi-
cally performed by their employees which increases the risk for failures.
One tool which addresses the issue for automating DNSSEC activities is
OpenDNSSEC (ODS). It is an open-source software which strives to fully
automate the zone signing, key management and auditing processes related
to securing a DNS zone. Once configured and started, ODS performs auto-
matic key rollovers so that no manual interaction by a system administrator
is required. It has been developed with efficiency, reliability and automa-

6

CHAPTER 1. INTRODUCTION

tion in mind which makes it attractive to companies, maintaining top-level
domain zones, such as SIDN (.nl), Nominet (.uk), .SE - The internet infras-
tructure foundation - (.se) and DK Hostmaster (.dk).

The following section DNSSEC gives an overview of how DNSSEC works.
It explains some basic terms which will be used further in this report. Sec-
tion Research questions formulates the exact research questions which this
project targets to answer.

1.1 DNSSEC

Domain Name System Security Extensions (DNSSEC) is a specification from
the Internet Engineering Task Force (IETF) which uses asymmetric cryptog-
raphy in order to secure the DNS protocol[5][6]. DNSSEC provides authen-
tication and integrity of DNS data, including authenticated denial of exis-
tence. It does that by attaching a digital signature (a DNS record of RRSIG
type) for each DNS resource record set, whose records have all the same label
and type. For instance, several A records for the label www.example.com
are signed by one RRSIG record. Note that, signatures increase ten-fold the
size of DNS packets. Therefore, Extension mechanisms for DNS (EDNS)[7]
have been designed to allow for DNS packets with sizes which go beyond
the allowed DNS protocol maximum of 512 bytes.

Signatures in a public-key infrastructure (PKI) are verified using a corre-
sponding public key. That is why, an authoritative DNSSEC-enabled DNS
server publishes two more additional records:

DNSKEY Contains a public key which is used by a DNSSEC-enabled re-
solver to validate received signatures.

DS Stands for Delegation Signer and contains a fingerprint (hashed value)
of the active key used for encryption at the child zone. The DS record
helps a DNSSEC-enabled resolver to verify that public keys have not
been forged during a man-in-the-middle-attack.

An inherent feature of DNS is its hierarchical nature. It means that control
of a child zone can be delegated to another administrative domain, different
than the one maintaining the parent zone. The DS records helps DNSSEC
support this DNS feature - it creates a brink in a so-called ”chain of trust”
between a child zone and its apex. This way the child zone is in control of

7

CHAPTER 1. INTRODUCTION

how it stores and handles its private keys. However, additional operational
burden is imposed compared to plain DNS. The child zone also needs to
update the DS record at its parent whenever the encryption key is changed.
Several solutions offer secure automation of this process but manual human
interaction with the parent is still common practice.

Figure 1.1: Resolving DNS data with DNSSEC[1]

Figure 1.1 illustrates the ”chain of trust” model. It shows how a caching
recursive resolver validates the A record for www.opendnssec.org using
DNSSEC. The resolver has received a request from a client computer to
resolve the address for www.opendnssec.org denoted as step 1. It then con-
tacts a root server (step 2) from which it gets DNSKEY, DS and RRSIG
records (step 3) and performs the following steps:

1. Validates the DNSKEY against a locally pre-configured trust anchor,
that is, a DS record which has been manually retrieved and authenti-
cated prior to starting the resolver. Most often this is done by down-
loading the DS record for the root zone from a verified SSL-enabled
web site (e.g. https://www.kirei.se/en/2010/06/20/root-ksk/ or
https://dnssec.surfnet.nl/?p=371). Note that a trust anchor is
used only in step 2 in order to verify the root zone’s DNSKEY.

2. Validates the DS record by using the signature in the RRSIG record.

8

https://www.kirei.se/en/2010/06/20/root-ksk/
https://dnssec.surfnet.nl/?p=371

CHAPTER 1. INTRODUCTION

3. Uses the DS record to validate the DNSKEY from the apex zone ”.org”

This way the ”chain of trust” is traversed until the requested record
(www.opendnssec.org/A) is returned from the ”opendnssec.org” zone (step
7). The resolver can check each received piece of data during the intermedi-
ate steps against its corresponding signature and verify that no forgery has
taken place. If verification fails, the zone is called to be ’bogus’.

Apart from providing data authentication, a public-key infrastructure (PKI)
can be used for other helpful features, such as DNS-based Authentication of
Named Entities (DANE)[8] which, however, is outside this project’s scope.

1.2 Research questions

� What can cause OpenDNSSEC to publish a ”bogus” zone?

This research project has been set up to investigate the resilience level of
OpenDNSSEC. It explores cases in which manual user interactions, but also
key functions to ODS itself, such as zone signing and key rollovers, can
result in publishing bogus zones. During the course of the tests, some bugs
have been discovered which will be (or have already been) addressed by
ODS developers, but also recommendations have been formed for system
administrators who use ODS.

The test cases which were performed are categorised in three groups within
chapter Test cases. Section Key rollovers presents how key rollovers were
evaluated. Sections Environment changes and Components crash talk about
how ODS recovers from changes in its environment or when one of its com-
ponents crash. Apart form that, various reasons exist for ODS to completely
stop working, among which are implementation bugs, human mistakes and
natural cataclysms. The aforementioned test cases do not investigate what
the risk is for a bogus zone to be published when ODS stops, nor when a
zone is expected to go bogus depending on the TTL values of its records.

� What are the optimum TTL values of keys and signatures which min-
imise the risk for a bogus zone when OpenDNSSEC has crashed?

Chapter Optimum TTL settings goes into a more theoretical research. It
addresses all those situations during which ODS has completely stopped

9

CHAPTER 1. INTRODUCTION

working for an undefined period of time. This introduces the risk that in
the meanwhile encryption keys and/or signatures can expire inside validat-
ing resolvers’ cache. Even when new keys and/or signatures are published
they might not reach validators straight away and validators can try to e.g.
validate old signatures with a newly published key. The risk for such cases
depends on what ’time-to-live’ (TTL) values have been assigned to key and
signature records. Hence, the chapter tries to recommend optimum TTL
values for key and their corresponding signatures in order to minimise the
risk of a zone appearing as ’bogus’ for DNSSEC-validating resolvers.

The scope of this project focuses on two particular versions of
OpenDNSSEC:

1.4.0a2 This is the latest stable version which has been released prior to
the start of this project.

1.5.0a1 This is latest version in development. Hence, it is only available
via ODS’s svn repository1 under revision number 6374 and will be
released as version 2.0 as soon as it matures to a stable release. This
version is also referred as NG (next generation).

The two versions share a lot in their architectural design but differ in their
code base. For example, version 2.0 of the Enforcer is rewritten from scratch
in order to address better performance benchmarks. The following chapter
OpenDNSSEC delves into the details of the two aforementioned versions.

1http://svn.opendnssec.org/branches/OpenDNSSEC-enforcer-ng

10

http://svn.opendnssec.org/branches/OpenDNSSEC-enforcer-ng

Chapter 2

OpenDNSSEC

Chapter Introduction presented the foundations of DNSSEC and how a zone
is validated based on the ”chain-of-trust”. The chapter also pointed out how
DNSSEC relates to this project’s research questions. The information in this
chapter gives an insight on the inner workings of the OpenDNSSEC suite
and the components it’s comprised of. This is necessary in order to be able
to build an adequate plan for testing its resilience level against unexpected
calamities.

The OpenDNSSEC suite has been developed by .SE (The Internet Infras-
tructure Foundation), Kirei, NLnet Labs, Nominet, SIDN, Sinodun Internet
Technologies and SURFnet. It is a turn-key solution for securing DNS zones
with DNSSEC requiring minimal-to-no user configuration. OpenDNSSEC
takes over the management of encryption keys from system administrators
and performs automatic key rollovers. Its other features are high efficiency
and resilience against common error cases.

At the time of writing of this report, the latest stable and documented
release of ODS is 1.3. However, version 1.4.0a2 is the latest in the ODS
svn repositories. Therefore, it was one of the two versions tested during
this research project. The main difference between version 1.4 and version
1.3 is the removal of the ”auditor” component. Its purpose is to validate
produced signed zones and ensure that no bogus zones are published. It
has been developed in Ruby and is currently deprecated and removed from
version 1.4. The reasons for its deprecation are outside the scope of this
project, however, more info can be found on the user mailing list of ODS1.

1http://comments.gmane.org/gmane.network.dns.opendnssec.user/1086

11

http://comments.gmane.org/gmane.network.dns.opendnssec.user/1086

CHAPTER 2. OPENDNSSEC

Version 1.5.0a1 is the other version used for testing during this research. This
version is a total rewrite of any prior versions and will be released as version
2.0 (also known as Next Generation (NG)). It is referenced through out
this project as version 2.0. Its performance has considerably been boosted
compared to version 1.4 even though the two versions do not have any
architectural differences. One notable difference that ODS users should
be aware of is that the command line tool ods-ksmutil has been removed.
Functions which it provides for version 1.4 - management of zones, backups,
configuration and key rollovers - have been ported into the ods-enforcer tool
from version 2.0.

The architectural design of the OpenDNSSEC suite is represented on figure
2.1.

Figure 2.1: OpenDNSSEC architectural design

OpenDNSSEC consists of three components which are developed separately
but run in concert with each other:

12

CHAPTER 2. OPENDNSSEC

Enforcer daemon The Enforcer’s role is the management of encryption
keys. It assigns encryption keys (key-signing and zone-signing keys, or
a combined singing key) to unsigned DNS zones in the form of zone
signing configuration files (residing in directory /var/opendnssec/sign-
conf). Apart from that, it is the Enforcer which takes into account
key timing considerations (specified in [9] and extended by [10]) and
rolls new encryption keys when old ones are about to expire, based on
a predefined key-and-signing policies (KASP’s) which are defined in
the KASP configuration file (located at /etc/opendnssec/kasp.xml).
Additionally, the Enforcer makes use of a relational database in order
to store configuration from the text files and key state information.

Signer daemon The Signer’s responsibility is to consume the zone sign-
ing configuration files produced by the Enforcer and sign a managed
DNS zone. For signing a zone, it uses encryption keys which are refer-
enced from the latter configuration files. Apart from that, the Signer
maintains a zone backup file for each of the zones it is responsible for
signing.

HSM The Hardware Security Module (HSM) represents a storage for en-
cryption keys. It uses a standard protocol (PKCS#11[11]) to com-
municate with the Signer which requests particular DNS records to
be signed. The HSM is where the actual encryption of DNS records
occurs. It never exposes the private part of encryption keys and that
makes it highly secure to software exploits.2

Key-and-signing policy (KASP) describe how key rollovers and zone signing
should be performed. Thus, each policy represents a group of primarily
timing configuration parameters, such as:

� the interval at which the Signer runs and checks whether a zone should
be resigned

� the period for which DNSSEC signatures are valid for

� the TTL values for encryption keys, how long unused encryption keys
are kept before being purged from the system, etc.

2A review[12] on several currently available commercial HSM has been provided by
Certezza on the commission of .SE (The Internet Infrastructure Foundation).

13

CHAPTER 2. OPENDNSSEC

Be default, two key-and-signing policies are available for use - default and
lab. The default policy targets ordinary users who install ODS and want
to have it running without tweaking into configuration settings. It ensures
key signing keys are rolled once per year, whereas zone signing keys are
rolled every three months. The lab policy is aimed for test users who want
to force ODS to roll new keys and resign zones more often (e.g. ZSK are
rolled every four hours and zones are resigned every ten minutes). For most
of the experiments in this report the lab policy have been used to sign the
”example.com” zone.

One interesting feature of the two tested version of ODS is the timeshift
capability. It is enabled by compiling ODS with the –enable-timeshift option
and allows users to test ODS’ behaviour as if it is running at a different point
in time than the current system time. Users can set the desired timestamp to
the environment variable ENFORCER TIMESHIFT and once started ODS
will read that one and act based on the time it represents.

Note that for this research a so-called soft HSM is used. It is a software
version of an HSM which also implements PKCS#11. It is developed by
the OpenDNSSEC team and proves very handy for testing or development
purposes since it eliminates the need of an actual hardware security module.

14

Chapter 3

Test cases

This chapter explores potential cases which can cause ODS to publish a
bogus zone. Section Key rollovers presents how key rollovers which ODS
performs are tested to ensure that signed zones are DNSSEC-valid. The last
two sections of this chapter - Environment changes and Components crash
- aim to investigate whether ODS properly handles changes in the environ-
ment it runs in and when any of its internal components crash. Mitigation
advices are given after every described error case. They can be beneficial
for both administrators using ODS, but also developers who contribute to
its code base. Note that the terms environment and components have been
defined in the context of ODS in this report in chapter OpenDNSSEC.

3.1 Key rollovers

The nature of every cryptographic system requires that keys are replaced
after it has reached a certain lifetime. This prevents attackers to deduce an
encryption key if they can retain enough encrypted material. In DNSSEC,
encryption keys should be replaced (or rolled) at regular intervals too. To
overcome the operational burden on system administrators managing en-
cryption keys manually, key rollovers should be performed automatically[13]
by DNSSEC-enabling software, such as OpenDNSSEC.

Key rollovers in ODS are implemented according to RFC4641[9]. It describes
in details the semantics of Key Signing, Zone Singing and Single Signing
keys (respectively KSK, ZSK and SSK). Additionally, the RFC presents

15

CHAPTER 3. TEST CASES

various key rollover schemes and concerns all timing considerations during
key rollovers which should be taken into account by DNSSEC implementors.
The aforementioned RFC is in a continuous process of being updated, that
is why a bis version for it exists which is still a draft. Another internet draft
document[10] will also extend the bis version with even more key rollover
schemes (around 6 more) as soon as it is approved as an RFC.

The RFC4641[9] introduces the notion of key states. This facilitates the
modelling of various key rollover schemes because:

� each key is assigned a particular state at any given moment of time

� based on its state, key functions can easily be derived, e.g. whether
the key should be published, whether it should be used for signing
DNS record sets, whether the latter signatures should be published,
etc.

All key states defined in RFC4641 and given succinct names in [10] are
illustrated in the figure 3.1.

Figure 3.1: OpenDNSSEC key states[2]

According to OpenDNSSEC documentation[2], only keys in the active state
are used for signing resource records. Thus, if during a key rollover, no active
key exists, DNS records cannot be signed. In order to verify the presence
of an active key at all times during a key rollover, a test scenario has been
created during which key states are monitored as reported by ODS. The
actions performed during the test case are as follows:

1. Configure OpenDNSSEC to use the ”lab” policy which rolls a new
ZSK each 4 hours

2. Retrieve key state information from OpenDNSSEC each second for
more than 4 hours

16

CHAPTER 3. TEST CASES

3. Look at the reported key states on a time line in order to verify an
active key exists during each second of the test

In order to use the ”lab” policy, one needs to set that in the zonelist.xml
configuration file for a desired zone (e.g. example.com) as follows:

<ZoneList>

<Zone name="example.com">

<Policy>lab</Policy>

...

</Zone>

</ZoneList>

Version 1.4 of OpenDNSSEC can report its key states to the user via the
ods-ksmutil key list command. A bash script writekeystates.sh has been
developed in order to automate step 2 of the key rollover test case. Addi-
tionally, a python script plotkeystates.py has been programmed to automate
the parsing of the collected key state information and plot it on a time line.
This way it is easier to visually check whether an active key exists at each
point in time during a key rollover.

The generated graph for OpenDNSSEC version 1.4 is depicted on figure
3.1. It clearly shows ODS successfully performs two ZSK key rollovers with
accurate timings. It maintains one active (coloured in green) ZSK key at all
times, that is each of keys with tag id 60175, 43251 and 63514. The figure
also shows a fourth ZSK with tag id 61035 which has just been published.
Apart from that, one may notice the key with tag id 22682. It is a KSK
which is not rolled over and stays in the ready state at all times since no DS
record has been uploaded to the parent. Or more precisely, ODS has not
been instructed that a DS record has been uploaded to the parent since the
command ods-ksmutil key ds-seen has not been invoked. Nevertheless, the
latter key is outside the scope of this test scenario.

17

CHAPTER 3. TEST CASES

Figure 3.2: Timeline plot of key states during a ZSK rollover with
OpenDNSSEC version 1.4

3.2 Environment changes

As described in chapter OpenDNSSEC, the OpenDNSSEC software suite
comprises of three processes - Enforcer, Signer and HSM. These processes:

� communicate with each other (through zone configuration files or
PKCS#11 interface)

� generate text files (zone configuration files and signed zone files)

� interact with other processes or system environment variables, such as
an SQL database and the system date

In the scope of this report, the term ”environment” encompasses all those
files or processes which the ODS’ processes interact with. Other processes

18

CHAPTER 3. TEST CASES

running on the same system where ODS is deployed on, or human mistakes
of system administrators, can delete or modify files which ODS uses, i.e.
change the environment in which ODS runs. It is essential that ODS handles
such changes in its environment and reports to the user when the changes
cannot be safely handled. Such behaviour defines the resilience of ODS and
prevents error cases which can result in ODS generating bogus zones.

3.2.1 Zone signing configuration file

The Enforcer in OpenDNSSEC creates a zone signing configuration file in
compliance with the KASP (Key And Signing Policy) configuration for each
zone which ODS is configured to sign. Surprisingly, even though the settings
in the KASP configuration are validated when read by the Enforcer, the
settings in a zone signing configuration file is not validated by Signer when
a zone is about to be signed. Therefore, should the file be edited by hand
or by a faulty system process, a bogus zone can be generated.

Note the following zone signing configuration file:

<Signatures>

<Resign>PT60S</Resign>

<Refresh>PT60S</Refresh>

<Validity>

<Default>PT30S</Default>

<Denial>PT3600S</Denial>

</Validity>

<Jitter>PT0S</Jitter>

<InceptionOffset>PT0S</InceptionOffset>

</Signatures>

The file contains a Resign period of 60 seconds which is greater than the
signature Validity period of 30 seconds. This introduces a bogus zone every
30 seconds since the signatures during that time interval have expired. The
extract of ODS log file proves the zone is signed once every minute:

Relevant lines from /var/log/ods.log

Jul 3 08:50:51 debian ods-signerd: [hsm] sign RRset[1] with key

67ca8c91407a6d7d48aa73c20ca216c7 tag 61035

...

19

CHAPTER 3. TEST CASES

Jul 3 08:51:51 debian ods-signerd: [hsm] sign RRset[1] with key

67ca8c91407a6d7d48aa73c20ca216c7 tag 61035

On the other hand, the generated signed zone file shows that the RRSIG
record is only valid for half a minute (from 2012-07-03 08:51:51 until 2012-
07-03 08:52:21):

Relevant records from /var/opendnssec/signed/example.com

ns1.example.com. 86400 IN A 192.168.0.1

ns1.example.com. 86400 IN RRSIG A 8 3 86400

20120703085221 20120703085151 61035 example.com.

REmIPr35wGCszPQfh/leNAThW6IIRj7495Qt+67V2hQL4G9ClOlT5eZwx6vbh

j0I7edFegLRnRMclowPkisNYBP05nKZLoyMfu/qf5KDcQmQJ58DY2L+hNzCGY

mL7Zq1DR/Nk4M9VLkjn2VKaGn4mrjPZ0FX1+o/juxk/EHerMo= ;{id = 61035}

The aforementioned error situation is observed with both investigated ver-
sions and can be manually mitigated by regenerating the zone signing con-
figuration file. This can be done by issuing the command ods-ksmutil update
conf which will also update the zone signing configuration in the database.
In general, intermediate files such as the zone signing configuration should
be validated and the settings they contain - sanitized or at least reported to
the user. This suggests that the Enforcer (which validates such timing set-
tings from the KASP file) and the Signer (which reads such timing settings
from the zone singing file) should share a common code base for validating
configuration parameters.

A more radical solution to this problem is to combine the two processes in
one thus eliminating the need of such intermediate files and, thus, their vali-
dation in processes which read them. However, changing ODS’ architecture
is a bold idea and therefore, it is discussed in chapter Future work.

3.2.2 Database

The database is used by Enforcer to store policy and key timing parameters.
The latter are imported to the database by the Enforcer or manually via
the ods-ksmutil update kasp command. Based on the parameter values in
the database the Enforcer generates per zone configuration file - the zone
signing configuration file - which defines when and using which keys the
Signer should further sign the zone.

20

CHAPTER 3. TEST CASES

It is essential that information from the database is validated before used for
generating zone signing configuration files. In a normal DNSSEC infrastruc-
ture the database is a remote entity, residing on a separate machine from
the one where ODS is deployed on. Thus, if the database gets compromised,
it is possible for an attacker to inject bogus information and thus to cause
ODS to produce a bogus zone. Therefore, the database becomes the weakest
point of security for OpenDNSSEC. Additionally, such an attack will stay
totally unnoticed since no validation, nor reporting of invalid database data,
is reported to the user.

Consider the following case in which a zone is signed according to the
”lab” policy. That means that the resign interval is set to 10 min-
utes and signatures are valid for 1 hour as the following extract from
/etc/opendnssec/kasp.xml demonstrates:

<Signatures>

<Resign>PT10M</Resign>

...

<Validity>

<Default>PT1H</Default>

...

</Validity>

</Signatures>

In the database policy settings are stored in table ”parameter policies”. In
order to find the value of the ”resign” period, one should find the row which
contains:

� parameter id equal to 1 which is the id of the resign period parameter
(defined in table ”parameters”)

� policy id equal to 2 which is the policy id for the ”lab” policy (defined
in table ”policies”)

That row should then contain the value of 600 which is the number of
seconds in 10 minutes which is the value of the resign interval in the
/etc/opendnssec/kasp.xml file. This is illustrated in figure 3.3 which depicts
the use of sqlitebrowser - a GUI application for editing SQLite databases.

21

CHAPTER 3. TEST CASES

Figure 3.3: Displaying the resign interval setting for the ”lab” policy in
the ODS database using the sqlitebrowser GUI application

If an attacker (or a corrupted process or manual user mistake) sets this value
to an interval greater than the signatures’ validity period (default for ”lab”
policy is 1 hour), he/she will force ODS to sign signatures much slower than
the time that they are valid for. Again, the screenshot (figure 3.4) below
demonstrates the changed value:

22

CHAPTER 3. TEST CASES

Figure 3.4: The resign interval has been modified to 7200 seconds for the
”lab” policy in the ODS database using the sqlitebrowser GUI application

The next time the Enforcer reads the configuration from database it updates
the zone signing configuration file. Users can manually force this action by
calling:

root@debian:~/rp2/data$ ods-ksmutil notify

Notifying enforcer of new database...

The result is that zone signing configuration files are updated with data from
the database. A look at the zone signing configuration file of ”example.com”
reveals that the database change has propagated and that the zone resign
period has become bigger than the signatures’ validity period:

<Zone name="example.com">

<Signatures>

23

CHAPTER 3. TEST CASES

<Resign>PT7200S</Resign>

...

<Validity>

<Default>PT3600S</Default>

...

</Validity>

...

As a result, on the next zone sign the Signer uses the new value of the resign
interval to adjust its signing schedule, as can be seen in the logs:

Jun 18 13:04:00 debian ods-signerd: [signconf] zone example.com

signconf: RESIGN[PT7200S] REFRESH[PT1800S] VALIDITY[PT3600S]

DENIAL[PT3600S] JITTER[P] OFFSET[P] NSEC[47] DNSKEYTTL[PT300S]

SOATTL[PT300S] MINIMUM[PT300S] SERIAL[unixtime]

A quick test can prove that after, for example, one and a half hours the Signer
will not resign the zone whose signatures are valid for only an hour. In order
to test the behaviour of ODS in the future, ODS has been compiled with
the TIMESHIFT option, as described in chapter OpenDNSSEC. Thus, the
environment variable ENFORCER TIMESHIFT is set to ”20120618143733”
which is exactly one and a half hours after the current system time - ”Mon
Jun 18 13:07:33 CEST 2012”. Once started in the future, the zone does not
get resigned because one and a half hours is smaller than the resign interval
of two hours (7200 seconds). Further on, the the tool ldns-verify-zone is used
to prove the validity of the zone during the current time and after one and
a half hours by using the -t command line argument. The aforementioned
actions can be observed in the following terminal snippet:

root@debian:/$ date

Mon Jun 18 13:07:33 CEST 2012

root@debian:/$ /root/rp2/ldns-1.6.13/examples/ldns-verify-zone

example.com

Checking: example.com.

Zone is verified and complete

root@debian:/$ export

ENFORCER_TIMESHIFT=20120618143733

24

CHAPTER 3. TEST CASES

root@debian:/$ echo $ENFORCER_TIMESHIFT

20120618143733

root@debian:/$ ods-control start

Starting enforcer...

WARNING: Timeshift mode detected, running once only!

Could not start enforcer

root@debian:/$ /root/rp2/ldns-1.6.13/examples/

ldns-verify-zone example.com -t 20120618143733

Checking: example.com.

Error: DNSSEC signature has expired for example.com. NS

Error: DNSSEC signature has expired for example.com. SOA

Error: DNSSEC signature has expired for example.com. DNSKEY

Error: DNSSEC signature has expired for example.com. NSEC

There were errors in the zone

Note that, the line saying Could not start enforcer is misleading since an
instance of the ods-enforcerd has actually been started:

Jun 18 13:08:44 debian ods-enforcerd: HSM opened successfully.

Jun 18 13:08:44 debian ods-enforcerd: Checking database connection...

Jun 18 13:08:44 debian ods-enforcerd: Database connection ok.

Jun 18 13:08:44 debian ods-enforcerd: Reading config "/etc/opendnssec/con

f.xml"

...

Jun 18 13:08:44 debian ods-enforcerd: Disconnecting from Database...

Jun 18 13:08:44 debian ods-enforcerd: Running once only, exiting...

Jun 18 13:08:44 debian ods-enforcerd: all done! hsm_close result: 0

The error message is printed by the ods-control application because before
completing it verifies that an instance of ods-enforcerd is running. However,
that is not the case since ods-enforcerd is not demonized when timeshift
mode is engaged. That means that it terminates itself right after performing
one full run (just as it reports this to the user: WARNING: Timeshift mode
detected, running once only!) and right before ods-control makes the check
whether ods-enforcerd is in the process list.

3.2.3 Signed zone files

Signed zone files are generated by the Signer process. They are consumed
by another process (normally an authoritative slave name server such as

25

CHAPTER 3. TEST CASES

Bind, NSD, etc.) and the zones they describe are ”blindly” published. The
word blindly implies that the name server does not perform any DNSSEC
validation on the singed zone files. This introduces the risk that should
these files be manually modified by an incautious administrator or a faulty
system process, their modification would remain unnoticed.

Here is a sample zone snippet in which a RRSIG record has its inception
date after its expiration date:

example.com. 300 IN RRSIG SOA 8 2 300 201106131

42916 20120613123008 56184 example.com. M7ZWp6BP1nEhBUcNHfcv8

5GQXK64ISBZ9xdf1w2q05WsIH/YwDi1nOSwWVq2ml3bmyQmqq4BNBiLL+ueh5

h18UPYUsX4pDdkjYjvQUNVXyTxfjXEFrhASQ4xAqY/BJZ/+JxQkEiW5aIG4uQ

W+SnVRgJXqxALp8RSLbObYWFDzP0=

This record clearly results in a bogus zone which is what ldns-verify-zone
reports as well:

root@debian:~/$ ldns-verify-zone /var/opendnssec/signed/

example.com

Checking: example.com.

Error: Bogus DNSSEC signature for example.com. SOA

There were errors in the zone

The zone can be resigned on demand by issuing the terminal command
ods-signer sign [zone name]. However, a couple of solutions exist which can
remedy such a risk in the long term and eliminate the possibility of published
bogus zones:

DNSSEC should monitor signed zone files DNSSEC validates at reg-
ular intervals (or at least at start up) whether signed zones are still
valid. It is advisable to use software for DNSSEC validation which
is different than ldns since ldns is used by ODS and thus, a bug in
ldns results in a bug in ODS as well. One example of other DNSSEC
validators is validns1 which is developed by AFNIC with focus on high
performance.

1http://www.validns.net/about/

26

CHAPTER 3. TEST CASES

Use of CreDNS CreDNS is a DNSSEC proxy. Its purpose is to reside be-
tween a hidden master and a public slave dns servers. It does DNSSEC
validation in the notify/transfer-chain and makes sure no bogus zones
are offered for transfer to the public slave servers.

The first solution concerns solely ODS whereas the second one involves the
modification of a whole DNS infrastructure, especially if use of hidden master
and public slave DNS server have not been implemented.

3.2.4 System date

Next to public-key cryptography, time is another key element which should
be considered when implementing DNSSEC. Each DNSSEC record signa-
ture is assigned an inception and expiration date and it is important that
DNSSEC signing software and DNSSEC validating resolvers synchronize the
time they work with. Thus, the system date is a part of the environment
which ODS heavily interacts with.

During the course of this project, it was discovered that ODS 1.4 does not
handle changes to the system date correctly. Such changes can be due to:

� incautious system administrators which manually update the system
time

� faulty NTP processes which update the system time automatically

� automatic daylight saving adjustments to the system date

Based on the current system’s date, it is possible that ODS starts publish-
ing zones with expired signatures. Even though all production servers are
properly configured right after their first boot against network time ser-
vice, changes of system date represent a possible risk to the deployment of
DNSSEC with ODS version 1.4.

Consider the following case in which ODS have been initialized with one
particular system date value, then stopped and started just after the system
date has been adjusted to a date in the past (1 year in the case). It turns out
that ODS does not notice the date change. Hence, a zone with signatures
which are valid for 1 hour is scheduled to be signed by ODS after 1 year
from the current date.

27

CHAPTER 3. TEST CASES

root@debian:~/$ date -s 20130613

...

root@debian:~/$ ods-control start

...

root@debian:~/$ ods-control stop

...

root@debian:~/$ ntpdate-debian

...

root@debian:~/$ ods-control start

...

root@debian:~/$ ods-signer queue

It is now Wed Jun 13 14:39:32 2012

I have 1 tasks scheduled.

On Thu Jun 13 00:11:04 2013 I will [sign] zone example.com

The cause for this problem is the fact that signatures’ meta data, such as
inception and expiry dates, are stored in the database once the signatures
are generated and their meta data is not compared to the current system
date when ODS starts up. The same behaviour is observed when the date
changes even while ODS is running. The following terminal snippet shows
the Signer who remains oblivious to the system date change:

root@debian:~/$ ods-control start

...

root@debian:~/$ date

Wed Jun 13 00:00:00 2013

root@debian:~/$ date -s 20120613

Wed Jun 13 00:00:00 UTC 2012

root@debian:~/$ ods-signer queue

It is now Wed Jun 13 00:00:08 2012

I have 1 tasks scheduled.

On Thu Jun 13 00:01:10 2013 I will [sign] zone example.com

It is interesting to note that the aforementioned problems with date changes
on the system where ODS is deployed are valid only when the date is ad-
justed in the past. Detecting date change in the future seems to be no
problem and ODS resigns a zone instantly:

28

CHAPTER 3. TEST CASES

root@debian:~/$ date -s 20120613

Wed Jun 13 00:00:00 UTC 2012

root@debian:~/$ ods-control start

...

root@debian:~/$ date -s 20130613

Thu Jun 13 00:00:00 UTC 2013

root@debian:~/$ head -2 /var/opendnssec/signed/example.com

example.com. 300 IN SOA ns1.example.com.

hostmaster.example.com. 2012062437 10800 15 604800 300

example.com. 300 IN RRSIG SOA 8 2 300

20130613000100 20130613000000 12849 example.com.

03NeA13hqlG2r8AZeX9MvpIlPp2Q/ZlxHPhbF1uREtIWRyApqfIwTfl7N1nTa

TZrrtq5GaUXjvPwsqtIGisbumjuNB+V1rD2F0YCw2IQNiSmO1LJfAJBV4GwZj

5OiuW4TGmodSI4dJaDkeenwLv9dFnvz+p9l3AUJjKSuP8m0xM= ;{id = 12849}

root@debian:~/$ ods-signer queue

It is now Thu Jun 13 00:00:13 2013

I have 1 tasks scheduled.

On Thu Jun 13 00:00:20 2013 I will [sign] zone example.com

Nevertheless, ODS version 2.0 handles properly the date change - both En-
forcer and Signer daemons get notified through a linux HUP signal. When
a system date change (in the past or the future) occurs, no matter whether
it is prior to ODS’ start or whilst its running, the next zone resigning date
is scheduled properly:

root@nsi:~/# ods-signer queue

It is now Thu Jun 13 00:52:42 2012

I have 1 tasks scheduled.

On Thu Jun 13 02:52:32 2012 I will [sign] zone example.com

3.3 Components crash

This section looks into the problems of properly signing a DNS zone with
OpenDNSSEC when one its components - Enforcer, Signer and HSM as
described in chapter OpenDNSSEC - crash and become unavailable. Even
though ODS is in a mature state and is already used by several top-level

29

CHAPTER 3. TEST CASES

domain authorities, it is occasionally the case that its components might not
be operational due to implementation bugs23 in ODS itself but also external
events which cannot be avoided (failing hardware, natural disasters, human
mistakes, security breaches, etc.).

3.3.1 Enforcer crash

The Enforcer is the component which manages existing encryption keys and
rolls new ones. The product of its work is a zone signing configuration file
which is consumed by the Signer to further sign a DNS zone. The latter file
contains a reference to the key (in terms of a keytag and key id) which is
used for encryption and, therefore, it needs to be updated when a new key
is introduced. Hence, there exist two cases which influence the impact of a
crashing Enforcer:

Enforcer crashes prior to generating a zone configuration file If
such a situation occurs when no zone configuration file exists for an
unsigned zone, such zone will simply not be signed by the Signer.
Thus, such DNS zone will not be published by ODS at all and will
remain hidden to public slave DNS server. This has the worst possible
negative effect for securing a zone with ODS.

Enforcer crashes after it has generated a zone configuration file
Such a situation has no impact for introducing bogus zones. The
Signer daemon can continue resigning expired signatures with en-
cryption keys, specified in the zone configuration file. Nevertheless,
encryption keys will not be rolled to new ones until the Enforcer
is restarted. This introduces the slight risk of attackers revealing
the private part of such key when they collect enough encrypted
material. That is why DNSSEC encryption keys’ lifetime is researched
separately and key lifetime recommendations are given depending on
the particular encryption algorithm and key size used[14].

During the conduction of this project, no Enforcer crashes have been ob-
served. The ODS bugs repository4 does not contain any reported cases for

2Signer bug issue in ODS’ jira: https://issues.opendnssec.org/browse/SUPPORT-29
3Signer bug issue in ODS’ jira: https://issues.opendnssec.org/browse/

OPENDNSSEC-269
4http://issues.opendnssec.org

30

https://issues.opendnssec.org/browse/SUPPORT-29
https://issues.opendnssec.org/browse/OPENDNSSEC-269
https://issues.opendnssec.org/browse/OPENDNSSEC-269

CHAPTER 3. TEST CASES

this as well. Hence, a crashing Enforcer has been considered of low proba-
bility and any further investigation on this topic has been dropped.

3.3.2 Singer crash

The OpenDNSSEC’s Signer is the component which monitors when signa-
tures expire and makes sure they are resigned on time. It communicates
with the HSM component in order to have those signatures signed. The
keys used for that purpose are referenced from within the zone signing con-
figuration file which has been generated by the Enforcer for each zone which
is configured in ODS.

Nothing can be done to mitigate a crashing Signer component. Monitoring
the process is helpful so that once a crash is detected, the process can be
restarted as soon as possible. This can be safely done at any moment in
time, however it introduces intricacies if a key roll over has begun while the
Signer has been unavailable. This has no direct impact for the generation of
a bogus zone and lies on the fact all the Signer needs to sign a zone properly
is a reference in the zone signing configuration file to a key which exists in
the HSM. And this requirement is ensured by the Enforcer who makes sure
there is always at least one active key at any moment in time[9] during a
key rollover.

However, if the Signer has crashed during a key rollover and has been con-
sequently restarted, some of the steps in publishing a new key might have
been omitted, e.g. a new DNSKEY record has not been published on time
during a pre-publication rollover, or new DNS record signatures during a
double-signature rollover schemes. The result is that the propagation time
for publishing new DNS keys (or signatures) has not been met and client re-
solvers suddenly see new signatures (or keys, respectively). Hence, resolvers
will fail to validate the DNS zone if a mismatch exists between:

1. old signatures and new keys (which have not been used to sign the old
signatures) or...

2. new signatures and old keys

The latter problem has led this project into more theoretical approach in
order to find out how the risk of client resolvers, which fail to validate a
zone when the Signer crashes during a key rollover, can be minimized. The
findings are discussed in chapter Optimum TTL settings.

31

CHAPTER 3. TEST CASES

3.3.3 HSM crash

The HSM component is not a strictly part of the OpenDNSSEC suite even
though ODS requires one to work with. A software implementation of an
HSM with PKCS#11 support is released by the ODS team. It can be used
by companies which do not want to invest in a hardware security module -
HSM’s can be expensive depending on the level of performance and features
which they offer. For more information, [12] presents an in-depth comparison
of several HSM.

The role of an HSM is to store encryption keys and sign data with them
without exposing their private part. Both the Enforcer and the Signer com-
ponents communicate with an HSM store and, that is why, it is interesting
to discover how they handle the case when an HSM has been destroyed
all encryption keys have been lost. If a crashed HSM has been replaced
OpenDNSSEC is expected to create new keys. Once signatures which have
been made with old key expire, the newly created key should also be intro-
duced and then used to resign all affected zones. Note that, rolling a new
key does not need to be sooner before signatures with the old key are about
to expire since those are still valid.

ODS provides functions for deleting keys in the HSM, and thus the afore-
mentioned error situation can easily be reproduced. The command which
purges all encryption keys from the HSM is ods-hsmutil purge and it takes
the name of a repository to purge the keys from (called ”SoftHSM” through-
out the project’s test set up):

root@debian:~/$ ods-hsmutil purge SoftHSM

Purging all keys from repository: SoftHSM

21 keys found.

Are you sure you want to remove ALL keys from repository

SoftHSM ? (YES/NO) YES

Starting purge...

Key remove successful: f59d17361cb5f154d46e3dab86fe6925

Key remove successful: 939932f5f9b26467e4a643855dd8d377

Key remove successful: 2daa6d688eca473632a3a8907b761c19

Key remove successful: 547885b6d6089f7a2e532a74d41a2df1

Key remove successful: 1425090aba4baf3b15c4ec2bf0fd3b79

Key remove successful: 41b60afd996235ef4d44b118cd65e8a3

32

CHAPTER 3. TEST CASES

Key remove successful: 63900749773e99f5d46d4eaa17c5eb23

Key remove successful: aa81b4c08d24833a1017518997f7f3de

Key remove successful: c5786de6003694e6909b1c02834b7b2c

Key remove successful: 333ac0c1e4f9deb26de2bb08055cfbad

Key remove successful: e71ffadf1957ad33565c61f9ecba5901

Key remove successful: 31b438f2eec5eaf02de005ae9295463c

Key remove successful: 99e5ede665c3ec3b4a504d91898596bc

Key remove successful: 9698063ebb9de9b6bcd5754bf2d76c90

Key remove successful: a3fc87acad6198f55641653db6635a14

Key remove successful: a8f88f6f65e6092a558147173c930076

Key remove successful: d10aee67d9b75d552740cf874804110d

Key remove successful: a4f20ab242c81914f3790fac10073e5e

Key remove successful: 30fe711e018ccd7729808319b2d45e98

Key remove successful: 08f9415c88f9335c624658f6f6ad6acf

Key remove successful: fcdd99fb271ff85c9719f7cb4d27f753

Purge done.

After keys have been purges from the HSM, the ODS logs reveal that the
Signer has problems resigning the zone and gives up with an error message.

Jun 15 17:58:41 debian ods-signerd: [worker[1]] sign zone

example.com

Jun 15 17:58:41 debian ods-signerd: [zone] zone example.com soa

serial already up to date

Jun 15 17:58:41 debian ods-signerd: [hsm] libhsm connection ok

Jun 15 17:58:41 debian ods-signerd: [rrset] -RRSIG: example.com.

300 IN RRSIG DNSKEY 8 2 300 20130614202125 20130614202025 22682

example.com . a8+gm9UuRgYfZ1co/omISckFBQ6Awo1nshtiLaeqMULKMJtOHp

/yQ+d8Xns31YQVC4hVT9HVvOHtZwYx13xHjEdIJtYm8ZO5g8Zwh7UHmqYT30GfGj

80VBFOw0f0+Xcj7cSCkfD2T8xQ5MQ5vA9S7vI25jHqP2+CEf8bJOi4JMLmf3Yjv5

dJ3B17xSEN9iCI23bXD57IBLBjEi23zcSrQRmlkh1Q25wo2Ywb9j1rslVObU4Saz

QyrW+2edf5OzwxRpYHBHN5Rm+OiYPweaEksyPrVB1wChD2bNuB//5ab2SjMZGLv7

b9KFXKtbnjZ46x2F43HP67gkYirXRMrUl0nw== ;{id = 22682}

Jun 15 17:58:41 debian ods-signerd: [hsm] sign RRset[48] with key

c578c5786de6003694e6909b1c02834b7b2c tag 22682

Jun 15 17:58:41 debian ods-signerd: [hsm] sign init:

CKR_KEY_HANDLE_INVALID

Jun 15 17:58:41 debian ods-signerd: [hsm] error signing rrset with

lib hsm

33

CHAPTER 3. TEST CASES

Jun 15 17:58:41 debian ods-signerd: [rrset] unable to sign

RRset[48]: lhsm_sign() failed

An attempt to roll over to a new key is the logical solution. After the key
rollover is done, the current key list is retrieved in order to verify that a new
key is indeed in use (key state is active). The list of current keys also shows
that ODS has detected the purged keys from the HSM:

root@debian:~/$ ods-ksmutil key rollover --zone example.com

root@debian:~/$ ods-ksmutil key list --verbose

SQLite database set to: /var/opendnssec/kasp.db

Keys:

Zone: Keytype: State: Date of next transition (to): Size:

Algorithm: CKA_ID: Repository: Keytag:

example.com KSK ready waiting for ds-seen (active) 2048

8 a8f88f6f65e6092a558147173c930076 SoftHSM NOT IN repository

example.com ZSK retire 2012-06-30 13:00:07 (dead) 1024

8 c5786de6003694e6909b1c02834b7b2c SoftHSM NOT IN repository

example.com ZSK active 2012-09-16 00:00:07 (retire) 1024

8 2d15019baa11449c9bf46ac7689d914f SoftHSM 22600

However, such an attempt to recover manually from lost keys by issuing a
key rollover fails as well:

Jun 15 18:05:01 debian ods-signerd: [hsm] unable to get key: key

c5786de6003694e6909b1c02834b7b2c not found

Jun 15 18:05:01 debian ods-signerd: [zone] unable to publish dnskeys for

zone example.com: error creating dnskey

Jun 15 18:05:01 debian ods-signerd: [tools] unable to read zone example.

com: failed to publish dnskeys (General error)

The problem is that even though the Enforcer has rolled a new key, the
Signer still thinks that the lost old key is available in the HSM and tries to
publish it which results in failure.

The probability of such an error situation where keys get lost from HSM
is difficult to estimate. HSM’s are built with security and reliability in
mind which should eliminate any chance that private keys get corrupted or
leak out of the system. Some tamper-resistant security modules (TRSM)

34

CHAPTER 3. TEST CASES

implement Tamper-Responsive features[15] - they can self-destruct or deny
access to private encryption material if a form of tempering is detected. That
means that even a single accidental drop of the TRSM can force to make
its contents unavailable. That is a possibility that ODS should gracefully
handle by introducing new keys (as soon as the security module is replaced).
This has great impact to system administrators since recovering from such
situation is not trivial. A radical approach to recover is to reset all ODS
metadata in the database and restart the ODS daemons. This is achieved
by calling the following three commands:

root@debian:~/$ ods-control stop

Stopping enforcer...

Stopping signer engine...

Engine shut down.

root@debian:~/$

root@debian:~/$ ods-ksmutil setup

WARNING This will erase all data in the database; are you

sure? [y/N] y

fixing permissions on file /var/opendnssec/kasp.db

zonelist filename set to /etc/opendnssec/zonelist.xml.

kasp filename set to /etc/opendnssec/kasp.xml.

Repository SoftHSM found

No Maximum Capacity set.

RequireBackup NOT set; please make sure that you know the

potential problems of using keys which are not recoverable

INFO: The XML in /etc/opendnssec/conf.xml is valid

INFO: The XML in /etc/opendnssec/zonelist.xml is valid

INFO: The XML in /etc/opendnssec/kasp.xml is valid

WARNING: In policy default, Y used in duration field for

Keys/KSK Lifetime (P1Y) in /etc/opendnssec/kasp.xml - this

will be interpreted as 365 days

WARNING: In policy lab, Y used in duration field for

Keys/KSK Lifetime (P1Y) in /etc/opendnssec/kasp.xml - this

will be interpreted as 365 days

Policy default found

Info: converting P1Y to seconds; M interpreted as 31 days,

Y interpreted as 365 days

Policy lab found

Info: converting P1Y to seconds; M interpreted as 31 days,

Y interpreted as 365 days

35

CHAPTER 3. TEST CASES

Zone example.com found; policy set to lab

Added zone example.com to database

root@debian:~/$

root@debian:~/$ ods-control start

Starting enforcer...

OpenDNSSEC ods-enforcerd started (version 1.4.0a2), pid 8125

Starting signer engine...

DEBUG: timeshift mode enabled, but not set.

OpenDNSSEC signer engine version 1.4.0a2

Engine running.

Even though, creating new keys is the logical action to do when old keys have
been lost, it does not fully mitigate the risk that some DNSSEC-validating
resolvers might fail to validate a zone signed with OpenDNSSEC. The prob-
lems stems from the fact that a new key is introduced without performing a
key rollover and is further investigated in chapter Optimum TTL settings.

36

Chapter 4

Optimum TTL settings

Chapter Test cases describes several error scenarios which can cause
OpenDNSSEC to produce bogus DNSSEC zone. This can happen as a
result of:

� not signing the zone at all

� not signing the zone on time

� or signing the zone with invalid information

Even though mitigations have been presented to handle most of these error
cases, two of them - Singer crash and HSM crash - lead to a risky situa-
tion in which DNSSEC-validating resolver can fail to validate a DNS zone.
This chapter tries to calculate that risk and find out how it can be min-
imized. Since a crashing component or a crashing HSM is a problem for
any DNSSEC software or DNSSEC infrastructure, this chapter leaves the
context of OpenDNSSEC and presents a generic solution applicable to any
DNSSEC error situation.

The research in this chapter is founded upon the definition of risk presented
in section Risk - definition and factors and couple of case assumptions doc-
umented in the section Assumptions. Section Example case explains the
mathematical logic in calculating the risk of publishing a bogus zone when
no key rollover is performed through means of an example where a DNS
key is assigned a TTL of 4 time units1 and a signature signed with that key

1The particular time unit used is irrelevant - seconds, minutes, hours, etc can be used
to produce the same results

37

CHAPTER 4. OPTIMUM TTL SETTINGS

is given a TTL of 6 time units. In the end, section Results presents what
TTL values minimize the risk of a bogus zone when no key rollover has been
done.

4.1 Risk - definition and factors

When a HSM or OpenDNSSEC Signer crashes, the situation will be no-
ticed sooner or later. Once detected, the problem normally gets solved by
replacing and/or restarting the faulty component. However, if

� the ODS Signer has crashed and the ODS Enforcer has performed a
key rollover in the meanwhile

� or the HSM has been replaced with a new one without being able to
retain old keys

then a DNSSEC zone needs to be resigned with a new key and published
without performing a key rollover in advance. When the Signer has crashed,
it needs to be started again as if no crash has occurred at all. The result is
that validating resolvers might see in one moment a DNS zone signed with
one key and in the next moment the same DNS zone signed with another
key which introduces the risk that they might have:

� cached the old key and see signatures signed with new key

� cached signatures signed with the old key and see the new key

Any of the aforementioned situation results in resolvers failing to validate
the DNS zone and declaring it as bogus. The key element which defines
when each of the two situations occur (or do not occur at all) is the time-to-
live(TTL) value assigned to the published key (TTL of DNSKEY record for
zone signing keys and the DS record for key signing keys) and the published
signatures signed with that key (TTL value of RRSIG records of various DNS
data, e.g. RRSIG A, RRSIG MX, etc.). Thus, this chapter investigates how
the latter two TTL values influence the risk of resolvers failing to validate a
zone when a new key or new signatures are introduced without performing
a key rollover.

In the context of information technology, risk is formally calculated by:

Risk = Likelihood ∗ Impact[16] (4.1)

38

CHAPTER 4. OPTIMUM TTL SETTINGS

Likelihood stands for the probability of an undesirable event to happen and
impact represents the scale of the negative effect which such an event would
cause to a given organization. In the scope of this project, the value for
impact is regarded as the time it takes until an undesirable situation is
recovered. That is, the time it takes until all DNSSEC resolvers see a valid
zone again after it has been signed with a new key and published without
performing a key rollover. Hence, that is the point in time when the resource
with the higher TTL expires in validators’ cache and they all start to use
the new key and the new signatures to validate a particular zone.

4.2 Assumptions

In order to be able to calculate the number of validators which declare a
zone as bogus in the aforementioned situation, a couple of assumptions have
been made:

1. the number of client (or end-host) validators is infinite

2. the remaining time in resolvers’ cache for each record is uniformly
distributed

The first assumption represents a ”worst-case” scenario in which validating
DNSSEC resolvers are constantly queried by indefinite number of client
resolvers. This is the case of an ”indefinitely popular” zone. This ensures
that DNS records (of DNS data, keys and signatures) in validating resolvers’
cache are refreshed as soon as they expire. This assumption helps to exclude
the number of validating resolvers which might not see a bogus zone in any
further calculations since they still have not refreshed their cache and are
oblivious to the newly introduced key.

The second assumption simplifies calculations. For example, it ensures that
the number of validators which cache one of the two resources (key or sig-
nature) is the same as the number of validators which cache the other of the
two resources at any given point in time.

4.3 Example case

The previous section of this report talked about several assumptions which
are taken when calculating what TTL values should be used in order to

39

CHAPTER 4. OPTIMUM TTL SETTINGS

minimize the risk of DNSSEC validators to report a zone as bogus when new
DNSSEC encryption keys or signatures are introduced without performing a
key rollover. This section explains the mathematics behind the calculations
through means of an example with two particular TTL values for a key and
signatures made with it.

Based on the two assumptions, figure 4.1 has been created using Gnuplot.
It illustrates the percentage of of validating resolvers which have cached the
two resources in any given point in time when TTL’s of 4 and 6 have been
used as an example. It makes no difference which of the two resources - a key
or a signature - is assigned with which of the two values - 4 or 6 because a
zone is bogus when either of the two expire before the other one has expired
as well. Hence, for simplicity in this chapter the two records are simply
referred as ”Resource 1” and ”Resource 2” without any further distinction.

Figure 4.1: Probability of a DNSSEC-resolver seeing a zone as valid at a
given time x when TTL1=4, TTL2=6

The x axis represents the advancing time and x = 0 is the moment when
a new key is introduced and caches of old resources start to expire. The
y axis represents the number of resolvers which have cache a particular re-
source. Thus, based on assumption (1), y = 1 when x = 0 which means

40

CHAPTER 4. OPTIMUM TTL SETTINGS

that prior to the moment in time when a new key or signatures are intro-
duced, all resolvers have the old key and the old signatures in their cache. In
general, there are four combinations for how two old resources and their cor-
responding two new versions can be cached inside resolvers’ cache. Table 4.1
presents those four combinations together with the mathematical functions
for calculating the number of resolvers that fall into each combination.

Cached Not cached

Resource 1 l(x) 1 − l(x)

Resource 2 b(x) 1 − b(x)

Table 4.1: Number of resolvers which have cached two resources, or not

The green line on figure 4.1 represents the part of validating resolvers which
have cached resource 1 with TTL 1. The line starts from point with coor-
dinates (0, 1), ends at point (TTL1, 0) and is plotted using function (4.2):

l(x) = 1 − x

TTL1
(4.2)

The blue line on figure 4.1 represents the part of validating resolvers which
have cached resource 2 with TTL 2, respectively. Similarly to (7.2)eq:l

b(x) = 1 − x

TTL2
(4.3)

The red line on the figure 4.1 represents the part of resolvers which have

� cached both old resources (column 1 in table 4.1)

� cached both new resources, thus both old resources have expired and
have been replaced with their new versions (column 2 in table 4.1)

Hence, the formula for the red line is the function f(x) (4.4) of the formulae
in table 4.1:

f(x) = l(x)×b(x)+(1−l(x))(1−b(x)) = 2×l(x)×b(x)+1−l(x)−b(x) (4.4)

Note that after the point in time when the resource with lower TTL expires
all DNSSEC validating resolvers have updated that resource with its new
version. From the example on figure 4.1, this is the moment in time when
x = 4. Thus, it is possible that a zone is rendered as bogus only until the

41

CHAPTER 4. OPTIMUM TTL SETTINGS

second resource’s TTL expires as well in the same validator (when x = 6 on
figure 4.1). This is the reason why the red curve turns into a straight line
after the lower TTL has expired. The part of validators which still cache
the resource with the higher TTL value can be calculated by subtracting
the part of validators in which the latter resource has expired (using the
formula in table 4.2, row 3, column 3) from the total amount of validators
(equal to 1). This calculation results in formula (4.3):

g(x) = 1 − (1 − x

TTL2
) =

x

TTL2
(4.5)

The two formulae f(x) (4.4) and g(x) (4.5) are both valid for calculating
the part of all resolvers which might see a valid zone. However, these two
forumalae are only applicable in their own domains, that is:

� formula f(x) (4.4) is applicable from the moment when new versions
of a DNS key and its corresponding signatures are introduced (x = 0)
until the moment when the resource with lower TTL expires (x = 4)

� forumala g(x) (4.5) is applicable from the moment when the resource
with lower TTL expires (x = 4) until the moment when the resource
with higher TTL expires (x = 6)

4.4 Results

Section Example case has explained how probability that resolvers see a valid
zone when a zone’s public key or signatures made with that key expire, can
be calculated for any point in time. This section looks at how to calculate the
sum of such probabilities during the total lifetime of the two DNS resources
in the resolvers’ cache.

Formula (4.4) calculates the probability of resolvers to see a zone as valid
at any given point in time x. Actually, the probability that resolvers see
a zone as bogus can be deduced by subtracting the probability for a valid
zone from 1. That hints to say that the area in figure 4.1 which is enclosed
above the red line and the axis at y = 1 represents the risk that resolvers
will see a bogus zone when its key and signatures are introduced without
performing a key rollover. Comparing the area above the red line for all
possible TTL values helps to distinguish which combinations of TTL values

42

CHAPTER 4. OPTIMUM TTL SETTINGS

result in greater or smaller risk for DNSSEC-validators seeing a published
bogus zone.

The area below the red line is calculated by using the integration of function
(4.4) and is denoted with formula F (x) (4.6). Note that function f(x) (4.4)
is first expanded with functions l(x) (4.2) and b(x) (4.3) and that L denotes
the value of TTL1 and B - the value of TTL2:

f(x) = 2 × l(x) × b(x) + 1 − l(x) − b(x) = 1 − x
L − x

B + 2×x2

L×B∫
f(x)dx = F (x) = x− x2

2 × L
− x2

2 ×B
+

2 × x3

3 × L×B
(4.6)

Mind, however, that function f(x) (4.4) is used to plot the red line up to
the point when TTL1 expires. After that point in time, the function g(x)
(4.5) is used and the area it encloses with the x axis is found integrating the
function g(x): ∫ ∞

0
g(x)dx = G(x) =

x2

2 ×B
(4.7)

In order to find the two areas (before and after the expiration of the resource
with lower TTL), the two integrated functions have to applied with the
proper boundaries. Hence, the formula for finding the total area is brought
down to the following:

H(x) =

∫ L

0
f(x)dx +

∫ B

L
g(x)dx = F (L) − F (0) + G(B) −G(L) (4.8)

Using formula H(x) (4.8) one can calculate the possibility of DNSSEC val-
idators seeing a valid zone when any combination of TTL values are used.
The following table 4.2 presents the calculations for combinations of TTL
values from 1 to 10. It has been generated using a python script which is
available in section ttl-risk.py from the Appendix chapter.

43

CHAPTER 4. OPTIMUM TTL SETTINGS

B/L 1 2 3 4 5 6 7 8 9 10

1 0.67 1.33 1.89 2.42 2.93 3.44 3.95 4.46 4.96 5.47

2 1.33 1.33 2.06 2.67 3.23 3.78 4.31 4.83 5.35 5.87

3 1.89 2.06 2.0 2.75 3.4 4.0 4.57 5.13 5.67 6.2

4 2.42 2.67 2.75 2.67 3.43 4.11 4.74 5.33 5.91 6.47

5 2.93 3.23 3.4 3.43 3.33 4.11 4.81 5.46 6.07 6.67

6 3.44 3.78 4.0 4.11 4.11 4.0 4.79 5.5 6.17 6.8

7 3.95 4.31 4.57 4.74 4.81 4.79 4.67 5.46 6.19 6.87

8 4.46 4.83 5.13 5.33 5.46 5.5 5.46 5.33 6.13 6.87

9 4.96 5.35 5.67 5.91 6.07 6.17 6.19 6.13 6.0 6.8

10 5.47 5.87 6.2 6.47 6.67 6.8 6.87 6.87 6.8 6.67

Table 4.2: Possibility for DNSSEC validators to see a valid zone when TTL
values from 1 to 10 are used

Table 4.2 reveals that when e.g. TTL value of 10 is used for one of the DNS
resources, the TTL value of 7 or 8 results in a greater chance (likelihood)
that resolvers will see a valid zone. The same pattern can be observed for
the other combinations of TTL values. It suggests that if administrators
use TTL values of ratio 3

4 for the public DNSSEC key record and signature
records produced with that key, they can minimize the undesired risk of
having a zone rendered as bogus by validating resolvers when it has been
resigned with new a key and published without performing a key rollover.

In order to visualize the contents of table 4.2, the heat map plot 4.4 has
been generated with Gnuplot. The code to produce this plot can be found
in section heatmap.gpi from the Appendix chapter of this report.

44

CHAPTER 4. OPTIMUM TTL SETTINGS

Figure 4.2: Possibility of DNSSEC validators seeing a valid zone when
TTL values from 1 to 10 are used

The plot depicts the results from table 4.2 in the form of a heat map and
shows once again that the relative number of DNSSEC-validating resolvers
which might fail to validate a zone when a new encryption key is introduced
without performing a key rollover, is minimal when TTL values with ratio
3
4 are used for the DNS public key record and the records of signatures
generated with that key.

Notice it is not easy to see on figure 4.4 that the 3
4 ratio used for TTL values

indeed contributes to lower risk for resolvers noticing a bogus zone. This
can be facilitated by plotting figure 4.3.

45

CHAPTER 4. OPTIMUM TTL SETTINGS

Figure 4.3: Normalized value of the risk that DNSSEC-validators might
see a bogus zone when TTL values from 1 to 10 are used

The figure uses formula N(x) (4.9) which is the normalized version of for-
mula H(x) (4.8) over the total area on figure 4.1. The latter is found by
multiplying the maximum values of x and y. Since the maximum value of
y equals to 1, the total area is effectively the value of the higher TTL value
B.

N(x) =
H(x)

B
(4.9)

Note that figure 4.3 introduces a strange artefact. It makes it seem that the
risk of a bogus zone is the same when pairs of big or small TTL values are

46

CHAPTER 4. OPTIMUM TTL SETTINGS

used. It looks like there is no difference when e.g. 3 and 1 TTL values are
used compared to 10 and 7. Of course this is not true in reality. The lower
the TTL values of DNS records are, the faster the records are refreshed, and
thus the lower the risk becomes of a zone being noticed as bogus by validating
resolvers. The problem of introducing a new encryption key without doing
a key rollover can be totally mitigated if DNS caching is switched off, i.e.
all records’ TTL values are set to 0. This, however, is impossible in practice
since it will surely raise the load on authoritative DNS servers.

The probability for DNSSEC validators marking a zone as bogus when it has
been signed with a new key without performing a key rollover can be found
by subtracting the value of formula (4.8) (for a given pair of TTL values L
and B) from the value of the total area in figure 4.1. Such calculation is
expressed in formula I(L,B) (4.10) knowing that the value of the total area
is equal to y ×B when y = 1 and B is the higher TTL value:

I(x) = (1 ×B) −H(x) (4.10)

Based on formula (4.1) the actual risk can be calculated where the proba-
bility of an undesirable event to happen is expressed by formula I(x) (4.10)
and the impact of such event is equal to the higher TTL value B. Table
depicts the calculated risk when TTL values from 1 to 10 are used.

B/L 1 2 3 4 5 6 7 8 9 10

1 0.3 1.3 3.3 6.3 10.3 15.3 21.3 28.3 36.3 45.3

2 1.3 1.3 2.8 5.3 8.8 13.3 18.8 25.3 32.8 41.3

3 3.3 2.8 3.0 5.0 8.0 12.0 17.0 23.0 30.0 38.0

4 6.3 5.3 5.0 5.3 7.8 11.3 15.8 21.3 27.8 35.3

5 10.3 8.8 8.0 7.8 8.3 11.3 15.3 20.3 26.3 33.3

6 15.3 13.3 12.0 11.3 11.3 12.0 15.5 20.0 25.5 32.0

7 21.3 18.8 17.0 15.8 15.3 15.5 16.3 20.3 25.3 31.3

8 28.3 25.3 23.0 21.3 20.3 20.0 20.3 21.3 25.8 31.3

9 36.3 32.8 30.0 27.8 26.3 25.5 25.3 25.8 27.0 32.0

10 45.3 41.3 38.0 35.3 33.3 32.0 31.3 31.3 32.0 33.3

Table 4.3: Risk for DNSSEC validators to see a bogus zone when TTL
values from 1 to 10 are used and a zone is resigned with a new key without
performing a key rollover

Table 4.3 suggests that if administrators use TTL values of ratio 3
4 for the

public DNSSEC key record and signature records produced with that key,

47

CHAPTER 4. OPTIMUM TTL SETTINGS

they can minimize the undesired risk of having a zone rendered as bogus by
validating resolvers when it has been resigned with new a key and published
without performing a key rollover. In order to visualize the contents of table
4.3, the heat map plot 4.4 has been generated with Gnuplot.

Figure 4.4: Risk of DNSSEC validators seeing a bogus zone when TTL
values from 1 to 10 are used

The research in this chapter has looked into the undesired effects when
DNSSEC signing components crash (for one or another reason) and DNS
zones need to be resigned with a new encryption key without performing a
key rollover. Combinations have been investigated when old encryption keys
or signatures expire at different points in time inside DNSSEC validators’

48

CHAPTER 4. OPTIMUM TTL SETTINGS

cache. This might cause validators to mark a popular zone as bogus because
if a query for such a zone occurs right after one of the two (a key or a
signature) expires, a validator will try to:

� validate an old signature with a new key or...

� use an old key to validate an updated version of a signature

In the both aforementioned cases of mismatching keys and signatures, a
DNSSEC validator reports the zone as bogus and stops serving it to any
(end-host) resolvers. Such an event can be catastrophic to enterprises be-
cause all services which they serve through DNS records become unavailable.

Investigation has shown that the risk for such undesirable situation to hap-
pen can be reduced if DNS administrators assign TTL values which have
the ratio of 3

4 to DNS signatures and their corresponding keys. Moreover,
such a recommendation is applicable not only for DNSSEC zone signing,
but also to any public-key infrastructure where public keys and signatures
have a limited timelife and need to be cached at intermediate validators.
The function of such validators is vital for providing security to end-host
resolvers which, in the case of DNSSEC, still do not often perform signature
validation themselves.

49

Chapter 5

Conclusion and
recommendations

This research project has tested the performance of OpenDNSSEC during
key rollovers and explored a number of error cases which OpenDNSSEC is
supposed to handle gracefully without causing a zone to be seen as bogus by
validating DNSSEC resolvers. All described error cases represent examples
of:

Changes in the environment which ODS interacts with These can
be caused by either faulty system processes or manual human mis-
takes. The term ”environment” in this project’s scope includes the
contents of configuration files, the database and the system date which
ODS interacts with.

Crashing ODS components Whenever one of the ODS core processes
fails due to a software bug or a natural disaster

This chapter summarizes the tested error cases and presents points for im-
provement of the operation of OpenDNSSEC.

5.1 Resilience against ODS environment changes

The components of OpenDNSSEC communicate with each other in several
ways. One of them is the use of zone signing configuration files which are

50

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

generated by the ODS Enforcer and read by the ODS Signer. This project
presents a case in which the latter configuration files are not validated by the
Signer and can lead to ODS generating a bogus zone without even warning
the user. Hence, it is advisable that newer versions of ODS sanitize the
content of zone signing configuration files before using it as an input for the
Signer.

Another error case related to changes in the environment of ODS which
this project highlights, is when the system date changes relative to the date
when a zone has been signed by ODS. In such a case, a zone needs to be
resigned straight away if its DNS signatures have been rendered as expired
compared to the new value of the system date. The experiment proved that
the new version of ODS (2.0) monitors date changes and acts accordingly
whereas the older tested version (1.4.0a2) experiences problems and thus,
can produce a bogus zone.

A date change is a common event in any production system. The date is nor-
mally adjusted on regular intervals against a central NTP service. However,
daylight saving time can also trigger system date updates. Such a case has
not been tested in this research project but it should be addressed by ODS
developers. In general, a recommendation is made for a test case in ODS
which identifies any interaction of ODS with the system environment and
reports how changes in the environment variables influence the behaviour of
ODS.

This research project also concludes that both OpenDNSSEC versions do
not monitor the signed zone files which they produce. System administrators
are assumed to never edit those files manually. OpenDNSSEC is built upon
this assumption and therefore does not monitor for changes in the signed
zone files. It is arguable whether such functionality is strictly required in
ODS itself. That is why, subsection Signed zone files recommends the use of
a DNSSEC proxy, such as CreDNS. System administrators should deploy it
between OpenDNSSEC and any public DNS server which serves zones from
OpenDNSSEC in order to prevent erroneous zone files getting published to
public DNS servers.

5.2 Resilience against crashing components

Subsection HSM crash proves that OpenDNSSEC cannot recover automati-
cally from losses of encryption keys in the HSM. Hence, if an HSM has been

51

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

destroyed and replaced with a new one, ODS does not introduce new keys
and does not initiate a key rollover if signatures produced with any old keys
have expired. The way to manually recover from such situation is to clear
ODS’ key state metadata which resides in the database.

ODS warns the user with an error message whenever it detects that it is
working with keys which are not backed up. However, future versions of
ODS should also be able to recover gracefully by introducing new encryption
keys when unbacked keys are lost. The introduction of such new keys can be
performed with a prepublication rollover. However, signatures made with
a lost key should be retained in a DNS zone until they have expired in all
validators’ caches (based on the signatures’ TTL value).

5.3 Optimum TTL settings

All performed test scenarios during this project have led into a more theoret-
ical research not limited to OpenDNSSEC only but applicable to DNSSEC
in general. Its purpose has been to investigate an error situation which can-
not be recovered automatically by DNSSEC-signing software, such as when
key components crash (as is the case when ODS Signer crashes). In that
case the software is simply restarted which may lead to the introduction of
new encryption keys and record signatures without making sure that old
keys and signatures have expired from the cache of all DNSSEC-validating
resolvers if:

� ODS Signer component has crashed and ODS Enforcer component has
rolled a new key in the meantime

� private key material has been lost from the HSM

In order to minimize the impact from one of the two aforementioned situa-
tions, system administrators are advised to assign TTL values with 3

4 ratio
to record signatures and their corresponding public keys, or vice versa. In
other words, the TTL value of a public key DNS record should be three
quarters the TTL value of DNS record signatures generated with that key,
or the other way around.

52

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

5.4 Framework for visualizing ODS key states

Last but not least, section Key rollovers presents a framework for monitor-
ing the key states which ODS assigns to encryption keys. The framework
generates a time line with all used keys and their states and has been used
to verify that a key in an active state (which is used by ODS for signing a
DNS zone) is always available during a ZSK prepublication rollover. The
framework can be used by:

� system administrators to monitor the process of key rollovers

� by researchers and ODS developers to verify that other key rollover
schemes, supported by ODS, are performed correctly

53

Chapter 6

Future work

This project has proved several cases in which OpenDNSSEC can be im-
proved in order to handle error situations better. However, it is unknown
whether more scenarios exist which allow an incautious system user or a
faulty system process to prevent ODS from signing a DNS zone correctly.
In this chapter several more cases are advised to be tested. Apart from that,
some questions which have not been answered in this report due to either
limited scope or time constraints, have been posed for further research.

6.1 Improvements for the ODS key states visual-
izing framework

Section Key rollovers presents a tool which helps users to monitor as-
signed key states of encryption keys during a zone signing prepublication
key rollover with OpenDNSSEC. The tool has been used to verify that at
any moment in time during the aforementioned rollover, there exists one key
in the ready state which can be used for signing a DNS zone. However, other
available key rollover schemes have not been tested due to time constraints:

� Key signing key rollovers

– KSK Double RRset

– KSK Double DS

– KSK Double Signature

54

CHAPTER 6. FUTURE WORK

� Zone signing key rollovers

– Double Signature

– Double RRsig

� Combined signing key rollovers

– DoubleRRset

– Single Signature

– Double DS

– Double Signature

– PrePublication

Additionally, the key states plotting tool can be significantly optimized.
Currently, it polls key states information while the Enforcer is running
uninterruptedly. This requires that the tool is ran for at least a period
of time which is greater than one key rollover period. Instead, use of
the ENFORCER TIMESHIFT environment variable (mentioned in chapter
OpenDNSSEC) can be implemented in order to request key states from the
Enforcer for future moments in time. This way monitoring of key rollovers
will require much less time to complete.

6.2 ODS architecture consideration

Several tested error cases in chapter Test cases have hinted problems related
to the architecture of OpenDNSSEC, that is, the functional separation of
the Enforcer and Signer components. Subsection Zone signing configuration
file recommends that input validation functions should be implemented into
both components so that their intercommunication cannot be influenced
by external to ODS processes. Subsections Enforcer crash and Singer crash
prove that such a functional separation cannot prevent ODS to publish bogus
zones. Further and more profound investigation in this direction is required
in order to review ODS’s architecture design and propose improvements.

6.3 Proof for the optimum TTL settings

Chapter Optimum TTL settings investigated how the risk of resolvers seeing
a bogus zone can be minimized when ODS processes crash and need to be

55

CHAPTER 6. FUTURE WORK

restarted. It proved that such a risk is minimal when the assigned TTL
values for public key records and DNS record signatures have the ratio of 3

4 .
Such a recommendation has been based solely on mathematical functions.
However, more profound research is necessary to verify whether such theory
really applies in practice and for all TTL values. The latter can be proven
by normalizing function H(x) (4.8) from chapter Optimum TTL settings
with B, finding its derivative to L or B and solving it when it equals to
zero. The expected result is that L = 3

4 ×B or B = 3
4 × L.

6.4 Risk analysis

The term risk has been used throughout this report in order to denote, in
a number of error cases, the negative impact of:

� ODS publishing a bogus zone and...

� such a bogus zone reaching the cache of DNSSEC-validating resolvers

Thus the impact of a particular error case for generating a bogus zone with
ODS has been referred to as risk whereas, formally, the term risk also re-
lates to the probability of an undesirable event to occur. Hence, a risk
analysis needs to be implemented to take into account the probability of
each error case. Only then can the error cases be compared with each other
and can be measured which one of them contributes to the greatest risk for
OpenDNSSEC publishing a bogus zone.

56

Bibliography

[1] Rickard Bellgrim. Opendnssec training. https://wiki.opendnssec.

org/download/attachments/590430/opendnssec.training.2012.

03.pdf?version=1&modificationDate=1330681864000, referenced
at https://wiki.opendnssec.org/display/DOCREF/Training+

Videos+and+Study+Material, March 2012. Cited on pages 5 and 8.

[2] OpenDNSSEC development team. Opendnssec documentation on key
states. https://wiki.opendnssec.org/display/DOCS/Key+States,
November 2011. Cited on pages 5 and 16.

[3] US CERT United States Computer Emergency Readiness Team. Mul-
tiple dns implementations vulnerable to cache poisoning. http://www.
kb.cert.org/vuls/id/800113, July 2008. Cited on page 6.

[4] Comcast. Analysis of dnssec validation failure. http:

//www.dnssec.comcast.net/DNSSEC_Validation_Failure_

NASAGOV_20120118_FINAL.pdf, January 2012. Cited on page

6.

[5] P. Mockapetris. Domain names - concepts and facilities. http://www.
ietf.org/rfc/rfc1034.txt, November 1987. Cited on page 7.

[6] P. Mockapetris. Domain names - implementation and specification.
http://www.ietf.org/rfc/rfc1035.txt, November 1987. Cited on

page 7.

[7] P. Vixie. Extension mechanisms for dns (edns0). http://www.ietf.

org/rfc/rfc2671.txt, August 1999. Cited on page 7.

[8] P. Hoffman. The dns-based authentication of named entities (dane)
transport layer security (tls) protocol: Tlsa. http://www.ietf.org/

id/draft-ietf-dane-protocol-23.txt, June 2012. Cited on page 9.

57

https://wiki.opendnssec.org/download/attachments/590430/opendnssec.training.2012.03.pdf?version=1&modificationDate=1330681864000
https://wiki.opendnssec.org/download/attachments/590430/opendnssec.training.2012.03.pdf?version=1&modificationDate=1330681864000
https://wiki.opendnssec.org/download/attachments/590430/opendnssec.training.2012.03.pdf?version=1&modificationDate=1330681864000
https://wiki.opendnssec.org/display/DOCREF/Training+Videos+and+Study+Material
https://wiki.opendnssec.org/display/DOCREF/Training+Videos+and+Study+Material
https://wiki.opendnssec.org/display/DOCS/Key+States
http://www.kb.cert.org/vuls/id/800113
http://www.kb.cert.org/vuls/id/800113
http://www.dnssec.comcast.net/DNSSEC_Validation_Failure_NASAGOV_20120118_FINAL.pdf
http://www.dnssec.comcast.net/DNSSEC_Validation_Failure_NASAGOV_20120118_FINAL.pdf
http://www.dnssec.comcast.net/DNSSEC_Validation_Failure_NASAGOV_20120118_FINAL.pdf
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc2671.txt
http://www.ietf.org/rfc/rfc2671.txt
http://www.ietf.org/id/draft-ietf-dane-protocol-23.txt
http://www.ietf.org/id/draft-ietf-dane-protocol-23.txt

BIBLIOGRAPHY

[9] O. Kolkman. Dnssec operational practices. http://tools.ietf.org/

html/rfc4641, September 2006. Cited on pages 13, 15, 16, and 31.

[10] W. Mekking. Dnssec key timing considera-
tions follow-up. http://tools.ietf.org/html/

draft-mekking-dnsop-dnssec-key-timing-bis-02, July 2011.
Cited on pages 13 and 16.

[11] RSA Laboratories. Pkcs#11: Cryptographic token interface standard.
http://www.rsa.com/rsalabs/node.asp?id=2133, 1995. Cited on

page 13.

[12] Johan Ivarsson. A review of hardware security modules.
http://www.opendnssec.org/wp-content/uploads/2011/01/

A-Review-of-Hardware-Security-Modules-Fall-2010.pdf, 2010.
Cited on pages 13 and 32.

[13] The European Network and Information Security Agency
(ENISA). Good practices guide for deploying dnssec. http:

//www.enisa.europa.eu/activities/Resilience-and-CIIP/

networks-and-services-resilience/dnssec/gpgdnssec/at_

download/fullReport, January 2010. Cited on page 15.

[14] Inc. SPARTA. Dnssec operations: Setting the param-
eters. http://www.dnssec-deployment.org/documents/

SettingtheParameters.pdf, November 2009. Cited on page 30.

[15] PCI Security Standards Council. Security requirements for hard-
ware security module (hsm). https://www.pcisecuritystandards.

org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%

20final.pdf, April 2009. Cited on page 35.

[16] Gary Stoneburner. Risk management guide for information technology
systems. http://csrc.nist.gov/publications/nistpubs/800-30/

sp800-30.pdf, July 2002. Cited on page 38.

58

http://tools.ietf.org/html/rfc4641
http://tools.ietf.org/html/rfc4641
http://tools.ietf.org/html/draft-mekking-dnsop-dnssec-key-timing-bis-02
http://tools.ietf.org/html/draft-mekking-dnsop-dnssec-key-timing-bis-02
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.opendnssec.org/wp-content/uploads/2011/01/A-Review-of-Hardware-Security-Modules-Fall-2010.pdf
http://www.opendnssec.org/wp-content/uploads/2011/01/A-Review-of-Hardware-Security-Modules-Fall-2010.pdf
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/networks-and-services-resilience/dnssec/gpgdnssec/at_download/fullReport
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/networks-and-services-resilience/dnssec/gpgdnssec/at_download/fullReport
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/networks-and-services-resilience/dnssec/gpgdnssec/at_download/fullReport
http://www.enisa.europa.eu/activities/Resilience-and-CIIP/networks-and-services-resilience/dnssec/gpgdnssec/at_download/fullReport
http://www.dnssec-deployment.org/documents/SettingtheParameters.pdf
http://www.dnssec-deployment.org/documents/SettingtheParameters.pdf
https://www.pcisecuritystandards.org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%20final.pdf
https://www.pcisecuritystandards.org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%20final.pdf
https://www.pcisecuritystandards.org/documents/PCI%20HSM%20Security%20Requirements%20v1.0%20final.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

Chapter 7

Appendix

This chapter accommodates several scripts which have been developed in
the course of this research project.

7.1 writekeystates.sh

This is a bash script which retrieves key state information from
OpenDNSSEC version 1.4 until interrupted with SIGTERM signal. The
script stores that information to a .log file with filename the current date in
the current working directory.

#!/bin/bash

for ((;;))

do

ods -ksmutil key list --verbose > `date +%Y%m%d-%H%

M%S`.log

sleep 60

done

7.2 plotkeystates.py

This is a python script which parses OpenDNSSEC key state informa-
tion from .log files generated with writekeystates.sh. It then uses mat-

59

CHAPTER 7. APPENDIX

plotlib.pyplot to generate a time line plot for all collected keys and their
states states.

#!/usr/bin/python

"""

This script will parse all files in the current

directory that have a ".log" extension. These

files should contain the output of "ods -ksmutil

key list --verbose" command and their filename

should represent the datetime when the command

was called. They will be parsed to produce a 2-

dimentional dictionary object which contains: key

id -> key state -> date. Such a dictionary

object is then used to plot the key states on a

time line graph.

"""

globalKeyStates = dict()

globalStartDate = ""

globalEndDate = ""

#keylistcmd = subprocess.Popen(['ods -ksmutil ','key

','list ','--verbose '], stdout=subprocess.PIPE ,

stderr=subprocess.PIPE)

#keylistcmd.wait()

#lines = keylistcmd.stdout.read().splitlines ()

def printKeyStates ():

print("Start date: "+str(globalStartDate))

print("End date : "+str(globalEndDate))

for keyId in globalKeyStates.keys():

print(keyId+" ("+str(len(globalKeyStates[keyId].

keys()))+" states)")

for keyState in globalKeyStates[keyId].keys():

print(" "+keyState.ljust (7)+": "+str(

globalKeyStates[keyId][keyState]))

def parseLogFiles ():

import glob

global globalStartDate , globalEndDate

60

CHAPTER 7. APPENDIX

filenames = glob.glob('*.log')

filenames.sort()

for filename in filenames :

date = filename.replace(".log","" ,1)

date = convertTimestampToUnixtime(date)

if globalStartDate == "" or globalStartDate >

date:

globalStartDate = date

if globalEndDate == "" or globalEndDate < date:

globalEndDate = date

f = open(filename ,'r')

fileContents = f.read()

f.close ()

parseKeyStates(date ,fileContents)

globalEndDate += 1

def parseKeyStates(date ,odsKeyListOutput):

import re

global globalKeyStates

lines = odsKeyListOutput.split("\n")

#remove last and first 2 lines

lines.pop(-1)

lines.pop(-1)

lines.pop(0)

lines.pop(0)

for line in lines:

fields = re.split(" +",line)

keyId = fields [8]. strip ()

keyState = fields [2]. strip ()

if keyId not in globalKeyStates:

globalKeyStates[keyId] = {}

if keyState not in globalKeyStates[keyId]:

globalKeyStates[keyId][keyState] = {}

61

CHAPTER 7. APPENDIX

globalKeyStates[keyId][keyState] = date

#elif str(globalKeyStates[keyId][keyState]) <

date:

globalKeyStates[keyId][keyState] = date

#else:

print ("ERROR: Earlier key state date is

overwriting date in the future.",keyId ,

keyState ,str(globalKeyStates[keyId][keyState

]),date)

######### Plotting #######

"""

Make a "broken" horizontal bar plot , ie one with

gaps

"""

def makeTimeTuples(keyStates):

times = []

if "publish" in keyStates:

times.append((

getKeyOrNextKeyStateTime(keyStates , "publish")

,

getKeyOrNextKeyStateTime(keyStates ,"ready") -

getKeyOrNextKeyStateTime(keyStates , "publish

")

))

if "ready" in keyStates:

times.append((

getKeyOrNextKeyStateTime(keyStates , "ready"),

getKeyOrNextKeyStateTime(keyStates ,"active") -

getKeyOrNextKeyStateTime(keyStates , "ready")

))

if "active" in keyStates:

times.append((

getKeyOrNextKeyStateTime(keyStates , "active"),

getKeyOrNextKeyStateTime(keyStates , "retire")

-

getKeyOrNextKeyStateTime(keyStates ,"active")

))

if "retire" in keyStates:

62

CHAPTER 7. APPENDIX

times.append((

getKeyOrNextKeyStateTime(keyStates , "retire"),

getKeyOrNextKeyStateTime(keyStates ,"remove") -

getKeyOrNextKeyStateTime(keyStates , "retire")

))

return times

def getKeyOrNextKeyStateTime(keyStates , keyState):

if keyState == "publish":

if "publish" in keyStates:

return keyStates["publish"]

else:

return getKeyOrNextKeyStateTime(keyStates , "

ready")

elif keyState == "ready":

if "ready" in keyStates:

return keyStates["ready"]

else:

return getKeyOrNextKeyStateTime(keyStates , "

active")

elif keyState == "active":

if "active" in keyStates:

return keyStates["active"]

else:

return getKeyOrNextKeyStateTime(keyStates , "

retire")

elif keyState == "retire":

if "retire" in keyStates:

return keyStates["retire"]

else:

return globalEndDate

else:

return globalEndDate

def convertTimestampToUnixtime(timestamp):

import time

return time.mktime(time.strptime(timestamp , '%Y%m%

d-%H%M%S'))

63

CHAPTER 7. APPENDIX

def getColor(stateName):

import re

statename = re.sub('[^a-z]','',statename)

if stateName == "publish":

return "yellow"

if stateName == "ready":

return "blue"

if stateName == "active":

return "green"

elif stateName == "retire":

return "red"

elif statename == "dead":

return "brown"

else:

print("ERROR [unknown state]: "+statename)

return "black"

def makeColors(keyStates):

colors= list()

if "publish" in keyStates:

colors.append(getColor("publish"))

if "ready" in keyStates:

colors.append(getColor("ready"))

if "active" in keyStates:

colors.append(getColor("active"))

if "retire" in keyStates:

colors.append(getColor("retire"))

return colors

def plotKeys ():

import matplotlib

matplotlib.use('Agg')

import matplotlib.pyplot as plt

print("Generating key states plot ...")

fig = plt.figure ()

64

CHAPTER 7. APPENDIX

fig.suptitle("ODS key states during pre -pub

rollover")

ax = fig.add_subplot (111)

for index , keyId in enumerate(globalKeyStates.keys

()):

times = makeTimeTuples(globalKeyStates[keyId])

colors = makeColors(globalKeyStates[keyId])

print("Debug [plot "+keyId+"]: "+str(times)+str(

colors))

ax.broken_barh(times , (index*2, 2), facecolor=

colors)

#ax.set_xlim(start -100,end)

ax.set_xlabel('Unix time ')

#ax.set_ylim (0,5 * len(globalKeyStates))

ax.set_ylabel("Key tag")

ax.set_yticks ([i*2+1 for i in range(len(

globalKeyStates))])

ax.set_yticklabels([keyId for keyId in

globalKeyStates.keys()])

ax.grid(True)

p1 = plt.Rectangle ((0, 0), 1, 1, fc="yellow")

p2 = plt.Rectangle ((0, 0), 1, 1, fc="blue")

p3 = plt.Rectangle ((0, 0), 1, 1, fc="green")

p4 = plt.Rectangle ((0, 0), 1, 1, fc="red")

p5 = plt.Rectangle ((0, 0), 1, 1, fc="brown")

ax.legend ((p1 , p2 , p3 , p4 , p5), ('publish ','ready '

,'active ','retire ','dead '))

fig.autofmt_xdate ()

plt.savefig("graph.png")

plt.close()

print("Done[graph.png].")

######### main #######

if __name__ == "__main__":

parseLogFiles ()

65

CHAPTER 7. APPENDIX

printKeyStates ()

plotKeys ()

7.3 ttl-risk.py

This is Python script which calculates the function H(x) (4.8) for TTL val-
ues from 1 to 10 inclusively. This represents the relative number of DNSSEC
resolvers which might fail to validate a zone for which a new encryption key
has been introduced without performing a key rollover.

#!/usr/bin/python

def l(x):

return 1-x/L

def b(x):

return 1-x/B

def f(x):

return 2*l(x)*b(x)+1-(1-l(x)) -(1-b(x))

def F(x):

return (2*(x**3))/(3.0*L*B) - (x**2) /(2.0*B) - (x

**2) /(2.0*L) + x

def g(x):

return x/B

def G(x):

C = max(L,B)

return x**2/(2.0*C)

cellWidth = 4

maxRows = 11

maxCols = 11

Print header row

print "B/L". center(cellWidth) ,"|",

for B in range(1, maxCols):

print str(B).center(cellWidth) ,"|",

print

Print data

for B in range(1, maxRows):

66

CHAPTER 7. APPENDIX

print str(B).center(cellWidth) ,"|",

for L in range(1, maxCols):

Integral approximation for goodness

area = F(L) - F(0) + G(B) - G(L)

if B<L:

area = F(B) - F(0) + G(L) - G(B)

total = max(B,L)

#area = area / total #normalized (relative)

goodness

#area = total - area #absolute badness

print str(round(area ,2)).center(cellWidth) ,"|",

if L==maxCols -1:

print

7.4 heatmap.gpi

This is the Gnuplot code used to generate graph 4.4 in chapter Optimum
TTL settings. It plots the relative number of resolvers which might fail to
validate a zone for which a new encryption key has been introduced without
performing a key rollover.

max(x,y) = (x>=y)*x + (x<y)*y

min(x,y) = (x>=y)*y + (x<y)*x

F(x, L, B) = x - (x**2) /(2*B) - (x**2) /(2*L) + (2*x

**3) /(3*L*B)

G(x, L, B) = x**2/(2*B)

x=L

y=B

H(x,y) = ((F(min(x,y), min(x,y), max(x,y))-F(0, min(

x,y), max(x,y))) + (G(max(x,y), min(x,y), max(x,y

))-G(min(x,y), min(x,y), max(x,y))))

heatmap_size = 10

set isosample 30

67

CHAPTER 7. APPENDIX

set hidden3d

set view map

set output "report.heat.png"

set terminal png size 800, 800

set xlabel 'TTL1 '

set ylabel 'TTL2 '

splot [1: heatmap_size] [1: heatmap_size] [0:100] '++'

using 1:2:(H($1 ,$2)):(H($1 ,$2)) with pm3d

68

	Introduction
	DNSSEC
	Research questions

	OpenDNSSEC
	Test cases
	Key rollovers
	Environment changes
	Zone signing configuration file
	Database
	Signed zone files
	System date

	Components crash
	Enforcer crash
	Singer crash
	HSM crash

	Optimum TTL settings
	Risk - definition and factors
	Assumptions
	Example case
	Results

	Conclusion and recommendations
	Resilience against ODS environment changes
	Resilience against crashing components
	Optimum TTL settings
	Framework for visualizing ODS key states

	Future work
	Improvements for the ODS key states visualizing framework
	ODS architecture consideration
	Proof for the optimum TTL settings
	Risk analysis

	Appendix
	writekeystates.sh
	plotkeystates.py
	ttl-risk.py
	heatmap.gpi

